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ABSTRACT 
This paper presents the results about the use of a methodology 
that combines two artificial intelligence (AI) models to predict 
oil, water and gas production in a Colombian oil field. By 
combining fuzzy logic (FL) and artificial neural networks (ANN), 
a novelty data mining procedure is implemented, including 
a data imputation strategy. The FL tool determines the most 
useful variables or parameters to include in each well production 
model. ANN and FIS (fuzzy inference systems) predictive models 
identification is developed after the data mining process. The FIS 
models are able to predict specific behaviors, while ANN models 
are able to forecast average behavior. The combined use of both 
tools with few iterative steps, allows for improved forecasting 
of well behavior until reaching a specified accuracy level. The 
proposed data imputation procedure is the key element to correct 
false items or to complete void positions in the operational data 
used to identify models for a typical oil production field. At the 
end, two models are obtained for each well product, conforming 
an interesting tool given the best accurate prediction of fluid 
phase production.
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RESUMEN
Este artículo presenta los resultados en el uso de una metodología 
que combina dos modelos de Inteligencia Artificial (IA) para 
predecir la producción de crudo, agua y gas en un campo petrolero 
colombiano. Al combinar lógica borrosa (LB) y las redes neuronales 
artificiales (RNA), se implementa un nuevo procedimiento de minería 
de datos, que incluye una estrategia de imputación de datos. La 
herramienta de LB determina las variables o parámetros más útiles 
para incluir en cada modelo de producción de pozo. Mientras que 
después los modelos predictivos de RNA y sistemas de inferencia 
borrosa (SIB) desarrollan la minería de datos. Los modelos SID 
son capaces de predecir comportamientos específicos, mientras 
que los modelos RNA son capaces de predecir el comportamiento 
promedio. El uso combinado de ambas herramientas con pocos pasos 
iterativos, permite una mejor previsión del comportamiento del pozo 
hasta alcanzar un nivel de precisión específico. El procedimiento de 
imputación de datos propuesto es el elemento clave para corregir 
elementos falsos o para completar posiciones vacías en los datos 
operacionales empleados para identificar modelos para un campo de 
producción de petróleo característico. Finalmente se obtuvieron dos 
modelos para cada producto de pozo, conformando una herramienta 
interesante dada la mejor predicción precisa de la producción en 
fase fluida.
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Due to technological advances such as diversity on high capacity 
sensors and computation performance, today it is possible to access 
a wide range of data from oil fields. Petroleum engineering is using 
such data to monitor the operation in oil production fields and to 
ensure production demand at the lowest possible cost [1]-[3]. 
However, classical data analysis techniques, where the analyst’s 
experience plays an important role, are not adequate to manage the 
large generated databases (big data). Hence, tasks such as optimal 
operation and recovery must be performed through computer-aided 
techniques as Asodallahi [4] presented.   Currently, the number of 
available computer-aided options is large, ranging from traditional 
statistical tools to modern artificial intelligence (AI) tools. 

In this research, two AI models to predict oil, water and gas 
production in a Colombian oil field were developed. The novelty of 

this proposal is the use of a procedure for pre-processing the existing 
production data using an AI data imputation algorithm. A combined 
use of fuzzy logic (FL) and artificial neural networks (ANN) tools in 
data mining is implemented independently, extending an adaptive 
pattern classification procedure [5]. The modeling procedure uses 
FL to determine the most useful variables or parameters to be 
considered in each well model [6] .  Next, ANN is used to obtain 
predictive models after the data mining processing. The combined 
use of both AI tools allows for an iterative process on any oil field 
model to enhance it until a specified accuracy level is reached by 
the model at large. This work is organized as follows: Section 2 
describes the main concepts of ANN and FL. Section 3 presents a 
review of the use of AI tools in petroleum engineering. The proposed 
modeling methodology is explained in Section 4. The results are 
shown in Section 5 and, lastly, conclusions are presented in Section 6.

INTRODUCTION1

2. THEORETICAL FRAME 
ARTIFICIAL INTELLIGENCE TECHNIQUES IN BRIEF

Artificial Neural Networks (ANN), Fuzzy Inference Systems (FIS) and 
Fuzzy-Neural-Networks have been increasingly used with success 
for predicting complex non-linear systems [7]-[10]. ANN and FIS 
are artificial tools developed to provide machines with man inspired 
logical procedures. Although there are differences between ANN 
and FIS structures and operation, their ranges of application are 
similar in modeling, forecasting and estimating tasks. The main 
difference between ANN and FIS stems from their basis. While an 
ANN imitates the human brain in its structural configuration, a FIS 
imitates the human brain in its reasoning method. As a first approach, 
it could be said that ANN (especially feedforward networks) have 
their optimum performance when pattern recognition tasks are 
required, while FIS (especially Takagi-Sugeno fuzzy models) are 
suitable for function approximation. There has been growing interest 
in the development of Neuro-Fuzzy systems, taking advantage of 
both, ANN and FIS models, to enlarge the range of application of the 
resulting model. However, inherent learning complexity of that hybrid 
tool has limited its use in real models in spite of several reported 
applications in academic field [11]-[16], so present work does not 
follow this strategy. As a common practice for identifying empirical 
models as ANN or FIS, a normalization procedure must be applied 
to the input and output variables to avoid scale differences. Thus, 
normalized databases have values in the hyper-cube [0,1]. Due to its 
linear nature, the normalization procedure has an inverse function, 
which is used to recover the original scale of predicted variables 
given by the model. 

ARTIFICIAL NEURAL NETWORKS (ANN)

An artificial neuron is a mathematical formulation receiving signals 
from other artificial or external neurons. The output signal from 
a neuron is calculated by applying a function (called activation 
function) to the neuron inputs [17],[18],[10]. The signals are 
transferred through artificial connections with associated weights, 
equivalent to natural connections in the human brain. A group of 
connected artificial neurons are called ANN.

The ANN has the ability of learning from examples, with or without 
supervision. Such learning is attained by tuning the weights 
associated to the connections between neurons. Usually, two phases 
are recognized in ANN applications: the training phase, where the 
ANN learns the hidden relationship in data, and the forecasting 
phase, where the ANN is used to predict new results from input 
data not used during the training phase. For the training phase, 
it is possible to use different optimization algorithms including 
conjugated gradients, generalized delta rule, genetic algorithms, 
simulated annealing and evolutionary strategies, as presented in, 
[19]-[23], all based on ANN prediction error. The main characteristic 
of the ANN approach is its capability to discover hidden relationships 
in data, and to predict new results in presence of input data with 
noise, uncertainty or incompleteness. The simplest ANN is a feed-
forward, which could be understood as a multiple regressor model 
where the independent variables are the inputs of the ANN and the 
dependent variables are the outputs of the ANN. This network has 
on input layer, one or more hidden layers, and one output layer.

In this work, a feed-forward network trained with the back 
propagation algorithm for training was used by Chen, et al. [17]. The 
activation function used in each neuron was a sigmoid (S-shaped) 
function evaluated as the quotient between 1 and [1+exp(-a*(x-c)], 
with a and c function parameters and x the input to the sigmoid 
function [18]. Only one hidden layer was necessary to model well 
production. The number of neurons in the hidden layer is found by 
trial and error, with the number of neurons providing the smaller 
mean squared error over the training set. For this model, seven (7) 
neurons in the hidden layer presented the best approximation to 
the available data set.

FUZZY INFERENCE SYSTEMS (FIS)

A Fuzzy Inference System (FIS) is a linguistic tool that performs  
mapping S:X⊂RN → Y ⊂RM using a Fuzzy Logic (FL) strategy. When 
this mapping is used as a model, the FIS is called a Fuzzy Model 
(FM). In this tool, the knowledge about the relationship between 
input domain X⊂RN and output domain Y ⊂RM is encoded as a set 
of  IF −THEN rules. The antecedent and consequent of the rule may 
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contain linguistic terms linked by logical operators: And, Or, Not, etc. 
In order to conform the antecedent, any FIS defines a set of linguistic 
terms Ai in the domain of each input variable i. This set of terms 
Ai={A1,A2,…AS } is known as a fuzzy partition on the variable X. The 
number of linguistic terms in Ai (granularity) is strongly related to FIS 
precision when it is used as a model. The other FIS rule component 
is the consequent, which is directly related to the output variable Y. 
The rule output may be a fuzzy set (Linguistic FIS, Relational FIS) 
or a numerical function (Takagi-Sugeno FIS). The final element in 
FIS is the inference machine, which operates over the rules set to 
map a set of input values to output values. This static mapping is 
augmented with the dynamic behavior of the system being modeled 
using external delays applied to the model input vector. Thus, the 
information of model inputs (regressor) is constituted by current 
and delayed values of the system inputs [24].

Usually, most of FIS operates with an explicit antecedent partition, 
but it is possible to use an implicit partition. A multidimensional 
fuzzy set Aij [25]-[27] can be used. In this case, all the individual 
fuzzy sets in the antecedent of each rule are transformed into a 
single multidimensional fuzzy set. In spite of the loss of linguistic 
meaning that occurs during this procedure, the multidimensional 
fuzzy set obtained results more compact. Therefore, the tasks 
related to FIS model design and tuning (model identification) result 
easier than same task for other kind of FIS and ANN. Additionally, a 
fuzzy clustering is performed over the data to obtain a first guess of 
the final number or rules. This approach guarantees the existence 
of a Takagi-Sugeno Fuzzy Model (TSFM) with multidimensional 
fuzzy sets in the regressor space (inputs X). The TS-FM uses as 
consequent a linear function of the input variables, which simplifies 
the model parameter identification. This model is able to represent 
a general class of static or dynamic nonlinear systems using rules 
with the form:

where x = [x1,x2,…xN] are the N inputs of the FM, Bi (x) is a 
N-dimensional fuzzy set and yi  is the output for the rule i defined by 
the function f i (x). Generally, this function is expressed as an affine 
linear function of input variables:

where aj
i are tunable parameters. It should be highlighted that 

a0
i term acts like the bias neuron in the ANN. The consequent 

parameters are those being used by the function f i (x) and the 
antecedent parameters are those that define a multimensional fuzzy 
partition of the input space. The normalized model output, yn, is 
calculated as a weighted average of the contribution of each rule (yn

i ):

where wi=g(xn) is the membership value of the normalized input 
vector xn to the input fuzzy set of the rule i [28]. 

In this work, a TS-FM with multidimensional fuzzy sets is used. In 
the FL approach, the model performs a function approximation 
opposed to the pattern recognition performed by the ANN. The 
TS-FM was attained maintaining the link between the minimum 
number of clusters and the best performance. After a sensitivity 
analysis, it was found that six (6) clusters equivalent to six fuzzy 
rules provide the best results.

MODELLING PETROLEUM PRODUCER FIELDS WITH AI

By developing computer data acquisition technologies, the 
management of big data bases made necessary to have more 
efficient data analysis tools. AI approaches got many possibilities 
for building  those analysis tools. Simultaneously, the access to such 
large quantity of information turns the identification of deterministic 
models into a hard task due to the inherent complexity of the models 
and the conventional use of expertise supported methodologies 
for model construction. The implementation of AI techniques for 
information processing in petroleum engineering can be identified 
since 1989, with the use of Artificial Neural Networks (ANN) by 
Halliburton to model total porosity and lithofacies [29]. Also, AI 
was used to configure a predictive decline curve in the field of West 
Virginia [30]. Adaptations of AI tools were introduced continuously 
to meet the requirements of oil production analyses. That necessity 
has been recognized over time. In that sense, one of the first works 
using AI is [31], where a Fuzzy Inference System (FIS) model is 
developed in FORTRAN to evaluate economic feasibility in enhanced 
oil recovery processes. Similarly, in the work of Boomer [32] two 
analyses were compared for the same field: one using professional 
experience, and the other using ANN. The accuracy achieved with 
the last one was superior than the accuracy using professional 
experience, and it demonstrates the usefulness of AI techniques in 
modeling oil producer fields.

Early in the 21st century, and taking advantage of high computer 
processing speeds, a successful coupling of AI techniques was 
possible. In [29], ANN and FIS techniques are used to develop an 
accurate model to forecast oil production of a petroleum field. 
Fuzzy Logical rules are used to analyze noise signals and to select 
the variables for improving forecasting capabilities of ANN models. 
Further, in [33], both AI technologies are used to characterize 
fractured reservoirs, due to their capacity to manage high data 
volumes, and to identify relationships among variables.

After the use of AI to model, its use was explored to optimize oil 
field operations. In [34], a genetic optimization algorithm is used 
to evaluate different scenarios for several gas producer fields, 
resulting in a solution to the proposed production problem. The work 
[35] integrates AI with the six-sigma norm to adjust oil production 
according to market demand. Also, using classical optimization 
algorithms, in [36], an optimal operation is found using numerical 
models and ANN. With the coupling of AI tools, the forecast task 
takes less time and required less computational efforts when 
thousands of scenarios are tested. This premise is also defended 
in [37], which recognizes that the main difficulty in the optimization 
process is the high demand of computational resources even to 
simulate simple operational conditions with deterministic models 
frequently used for oil fields. In this same vein, the use of AI emerges 
as a useful strategy because those tools allow the identification of 
simple but robust models through ANN and FIS. There are results 
that show successful applications of those techniques to optimize 
a multi-well field operation [38].

As a consequence of its successful application in modeling, AI 
started to be used not only to obtain predictive models. The 
parametric identification of petrophysical properties was the next 
step. In the work of Al-Fattah and Al-Naim [39]  an ANN model is 
used to represent the complex and non-linear phenomena of fluid 

(1)∶    ( )
 ℎ  = ( )

(2)( )=  0+  1 ( 1)+⋯  +  ( )=  0 +  

(3)=
∑ =1
∑ =1
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transport and to predict water-oil relative permeability in a field. 
Similarly, in [40] authors use AI to analyze a set of data looking for 
trends to predict the behavior of oil and gas offshore assets.

With the access to big data bases, the priority evolved to analyze 
that information and extract useful knowledge about the oil field. 
Thus, [41] obtains an accuracy model using ANN without a-priori 
assumptions on the geological properties of the field. In spite of the 
heterogeneous properties of the treated field, the identified model is 
obtained only from historical data. Using ANN, [42] couples that AI 
tool with the nodal analysis to identify a reliable model in production 
allocation. Both techniques enable gathering the necessary data 
from available data to develop individual well models. Going a 
little further, in [43] an AI-based model was developed using data 
mining over historical data to predict the performance and to plan 
operational strategies for an oil field.

In view of the foregoing, traditional and AI methodologies have 
been coupled to obtain accurate models in petroleum engineering. 
An example of that is the technique named Top-Down Intelligent 
Reservoir Modeling (TDIRM), which integrates traditional engineering 
analysis with AI and Data Mining [44]. This technique has been used 
recently in the work of Dahaghi et. al. [45] to estimate petrophysical 
parameters, remaining hydrocarbon reserves, new well performance 
and other analysis directly performed on field data. The most 
commonly reported AI tool is the ANN, but FIS have participated 
in petroleum engineering too. Some reported uses in petroleum 
engineering could be checked in [46]. Regarding data mining, a 
general approach was proposed and tested in [6] for industrial 
processes. The adaptive resonance theory [5] is added to determine 
the operative modes in dynamic processes. Then, such dynamic 
modes are used for big data processing using AI tools. Improved 
data bases retain the main characteristics of the production field, 
avoiding false or wrong production values.

Recent works are related to complex engineering tasks. In [47], 
AI is used to model unconventional reservoirs. ANN and FIS with 
genetic algorithms have been used to find the production profile 
under a given operation, or solve the contrary problem, given a 
desired production profile to find the operation. In [48], a production 
history matching is made using AI. Hence, the model parameters 
are adjusted according to available data seeking to improve model 
accuracy. The result is a successful identification process for three 
heterogeneous field cases reported in the literature. Finally, in 
[46] FIS and Genetic Algorithms optimization are used in history 
matching processes to obtain accurate parameters identification 
for a production field.

A MODELLING METHODOLOGY FOR PRODUCER FIELDS

A petroleum producer field is a set of wells arranged in order to 
produce oil and gas from a reservoir or asset conformed by one or 
more formations. As it was mentioned before, having an interaction 
model among wells during production will provide a valuable tool 
to optimize producing field operations. In this regard, and looking 
for using artificial intelligence (AI) tools capabilities, a combined 
modeling strategy using artificial neural networks (ANN) and fuzzy 
inference systems (FIS), is presented herein. The major challenges 
to overcome were: i) to complete an available big data base looking 
for a complete data base containing all behaviors of an oil field, ii) 
to mine the available big data in order to find wells’ interaction and 
other operating effects over production, and iii ) to obtain a model 
for each mass flow from each operative well in the oil field.

The used big data base is directly taken from an automatic data 
acquisition system of the oil field operator. The first challenge is 
solved using a simple algorithm to data fault detection and data 
imputation, obtaining a data base without lost data. The proposed 
algorithm operates through a data imputation procedure to detect 
data absences or data inconsistencies [6]. The second challenge 
is overcome using a FIS model as a well-clustering detector. 
An iterative FIS model identification detects when a regressor 
configuration is optimal for a well production model. Such regressor 
contains all wells affecting the modeled well. A simple analysis of 
all regressions obtained for all wells' models shows out the wells 
interaction in the field. The last challenge is overwhelmed identifying 
an ANN model and a FIS model for each mass flow for any fluid 
phase in each well. Next, models are selected in accordance with 
their prediction capabilities (minimum error over past data). This is 
the mechanism to attain the best AI model for each substance flow 
per well. When a batch of new data is available every six months, 
the re-selection of the “best model” is performed. It was found that 
some substances at some wells are better predicted by an ANN 
model, while others are better forecasted by a FIS model. Finally, 
the model of the oil field as a whole is a net of AI models (ANN and 
FIS) formed by the model for each well individual mass flow. Each 
individual AI model provides the forecast to be used as input by all 
other individual models to provide the next step forecasting.

DATA IMPUTATION IN DATA BASE

In order to complete the data fault in the available big data and taking 
into account a previous data set that represents the natural behavior 
of the wells, a data imputation procedure is proposed [6]. During 
the procedure, all changes in the original data base are recorded 
to contrast the real data set and each new reconstructed data set. 
Data imputation is required because natural field behavior must be 
totally reconstructed for modelling the field production with a low 
error margin. The purpose of this modeling work is to represent 
the natural behavior of the wells, but under current data fault, it is 
necessary to reconstruct data in order to correct those points where 
the field did not operate as it does normally or no-data exist, as it 
said by Buuren [49].

The proposed methodology first computes the average value of each 
mass flow on a moving time horizon. Two limit values are selected in 
accordance to direct values obtained from the data base to determine 
the tolerance for production variables. Next, the deviation for each 
data within this time window is calculated. Those values that are 
out of the select range are imputed with a random value of the data 
generated inside the range. In this work, a period of 67 days was used 
as moving horizon and a restricted range of  x̂ ±0.03 was selected for 
all normalized variables [0, 1]. Figure 1 shows the data imputation 
result for only one production well and one substance (oil). Similar 
results were obtained for the rest of wells of the modeled production 
field. The thick line with squares represents real measured data, as 
taken by human operators. The thin line with circles indicates the 
reported data from production completed by expert engineers using 
current estimative models available in the oil industry. Finally, the 
thin line with asterisks shows the results of the proposed imputation 
procedure, which was the database used for model identification 
and validation.

After the application of the foregoing procedure, a smoother behavior 
is observed over all mass flow on most of the wells. Obviously, such 
data imputation procedure minimizes the sudden changes caused by 
human intervention over a well, but preserves original well behavior.
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Figure 1. Data imputation results for oil production 
from well 3.

NORMALIZATION
To find a model regressor (model inputs), a data clustering algorithm 
operating with fuzzy c-means principle detects the effect of different 
inputs on a specific mass flow in a well. As for oil, gas and water 
production for each well is reported in volumetric measurements, 
requiring data normalization of all variables into [0, 1] interval. A 
good normalization procedure must be: i) a linear operator with 
known inverse and easily computed and ii) able to maintain records 
of used limits to denormalize any datum to obtain the original value 
with its original units. Oil, gas and water production can be compared 
only in original units, non at normalized units, given their different 
original measuring units. However, using normalized data is possible 
to check when a well mass flow makes a significant contribution to 
overall field production. 

The overall production is calculated with (4):

by adding up the production of all wells for the substance i : 1=oil, 
2=gas, 3=water. The percentage of participation of each well 
regarding total production is evaluated according to (5):

where q is calculated for the k-th well and process started for the 
substance i at time t. Finally, it is made the normalization of the 
overall production too with (6), (7), and (8).

(4)( , ) =∑ ( , )
=1

 

(5)( , ) =
( , )

( , )
 

(6), = min
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=
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(8)
( = , )

=
( = , ) −  ,

, − ,
 

As was previously said, normalized variables are all within the 
range [0, 1]

AUXILIARY VARIABLES DETERMINATION
With the aim to use variables containing extra information about 
the physical properties of the well, it is proposed to calculate the 
accumulative water-oil ratio (aWOR) and the accumulative water-
gas ratio (aWGR). If oil, gas and water flows can be described 
by Darcy’s law, those ratios provide a comparison of the relative 
permeability of porous media, pressure gradient and length of the 
trajectories for each substance. Therefore, those ratios make it 
possible to identify the wells that are more likely to produce one of 
the substances compared with other wells, keeping in the model 
the intrinsic flow nature of well to be modeled. 

The accumulative ratios were selected over instantaneous ratios 
for two reasons: i ) instantaneous ratio is a simple function of flow 
variables, not providing extra information, and ii ) due to the noisy 
nature of the measured flow, the ratio computation will give some 
extra noisy variables, hindering the real flow trends. In this regard, 
and avoiding extra-noise over the data set, variables with smooth 
profile are used in the proposed model. A cumulative calculation 
acts as a smoother due to the effect of summation of variable 
variations over time. Based on that concept, aWOR and aWGR were 
calculated by (9) and (10):

keeping in mind that Qk (i,t) for k the well, i : 1=oil, 2=gas, 3=water 
and t the time index. It is important to highlight that except for 
t=1, aWOR and aWGR do not have a direct relationship with the 
respective substance flows. In fact, those auxiliary variables provide 
information about the historic behavior of the well production.

MODEL INPUTS (REGRESSOR) SELECTION
After applying the above processes, each register at database for 
a k well have five entries or variables (oil, gas and water flows, in 
addition to WOR and WGR). Thus, it is necessary to determine which 
of all variables for other wells are adequate to model the flow of 
different substance at the current well. Two procedures for input 
variables selection are used. These are explained below:

Descriptive relation among variables
This process is aimed at determining what variables provide relevant 
information for a specific well substance-production model. It 
identifies the relationship among variables that will provide good 
model accuracy. In this sense, it selected the next model regressor 
structure for each well production flow in real time, qk (i,t), produced 
flow one day ago, qk (i,t -1), current cumulative aWORk (t) and 
current cumulative aWGRk (t). Rember that cumulative variables 
provide information about relative production ratios of different 
substances inside the historical production profile of each well. In 
spite of the possibility of using a longer time lag (>2 days) for model 

(9)( ) =
∑ (3, )=1
∑ (1, )=1

 

(10)( ) =
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regressor, to use data lagging only one day 
was enough to achieve good model precision. 
This prevents the uncertainty and noise 
introduced when a longer delay is used in the 
regressor. Obviously, if low-noise data were 
available, to include a longer time lag will 
improve model accuracy. Also, to model a 
given substance production, data of the same 
substance production for all wells are used. 
With their regressor selection, two objectives 
are fulfilled: i) obtaining a set of model inputs 
(regressor) with more information to model 
identification, and ii) avoiding noise variables 
into the regressor. When variables to be 
used for modelling are already selected, 
the next step is to determine the wells that 
may provide useful information to improve 
the accuracy of model. It will be explained 
in the next section.

Relation among all wells
As it was mentioned before, the aim is to 
determine the variables of a specific group 
of wells that provide useful information to 
model a specific mass flow. This process is 
carried out with a two-step random search.

(I) Double random selection of model inputs. 
This step provides the input variables to be 
taken into account in each model (model 
regressor). The suggested procedure is:

a) With all variables indicated previously as 
model regressor to identify a patron model. 
In model identification, 70% of the available 
data is used in the identification process. The 
rest of data is used for validation purpose 
to allow the accuracy model quantification 
through the difference between predicted 
and real datum. The identification and 
Validation data sets are randomly selected 
from the complete imputed data base. 

b) Randomly, one of all input variables is not 
considered in the model regressor. A new 
model is obtained, and its validation error 
is calculated. If current validation error 
is better than patron model, the selected 
variable is removed definitively from the 
regressor and the new model is the patron model. If this is not the 
case, the selected variable is returning to to regressor and a new 
randomly selected variable is removed from the regressor.

c) The number of admissible deletions and the number of admissible 
trials are set as a priori parameters. If any of those admissible values 
are reached, the random search process stops and the current patron 
model is saved as a candidate for useful model. The process restarts 
from the beginning (starting with the identification of a new first 
patron model taking into account all variables) until reaching the 
maximum number of trials, or the admissible number of deletions. 
Thus, the useful candidate models are obtained.

(II) Best model selection: According to recorded validation error for 
each candidate to useful model, the best model is selected as the 

one offering best accuracy. At the end of this procedure, a model for 
one variable is available. The procedure is repeated until all variables 
to be modeled have their respective model.

Figure 2 presents the proposed random search algorithm. Inner 
iterative process performs searching task, deleting variables one-by-
one until finding which should be eliminated to enhance the accuracy 
of the model. Second, an iterative process deletes the selected 
variable and restarts the search until reaching the maximum 
number of deletions, assuring that models with just one variable 
do not persist there. An outer iterative process allows for obtaining 
different candidates for final models to forecast well behavior. Once 
the regressor is determined, the ANN and FIS models are identified.

RANDOM SEARCHING

Identify the type of varable to model
(oil, water, gas)

Identify a model with
ALL available data

Select radomly an available
variable to be removed

Identify the new model

Delete the select
variable

Has accurracy
improced?

Save final model as
useful candidate model

Select the useful candidate
model with best acurracy

END

YES

YES

YES

YES

NO

NO

NO

NO

NumMODELS=1

NumDELETAION=1

NumTRIALS=
NumTRIALS+1

NumTRIALS=
NumTRIALS+1

NumTRIALS<maxTRIALS

NumDELETAION>maxDELETAION

NumTRIALS>maxTRIALS

NumTRIALS        =1

Figure 2. Algorithm for random searching used to find the best model regressor.
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This work is conducted based on information of a Colombian oil 
producer field. The field has three producing formations, the main 
one with 23 active producer wells at 2013. The producer wells in 
the main formation are widely distributed along the field. The wells 
in the main formation produce by natural flow; however, with the 
aim of pressurizing the reservoir, natural gas is injected through 
15 special wells. All wells in the field produce water, oil and gas. 
The field operation data available includes daily production of each 
well, distributed as water, oil and gas flows. Records contain the 
produced flow across all productive period of each well. For the 
purposes of this work, only data corresponding to 2013 is used for 
model construction and validation. The objective is to identify model 
parameters using 300-day data and validate the model forecasting 
over the last 35 days of the year. In this way, an indicative of the 
model accuracy is obtained.

Five wells were selected to apply the proposal algorithm looking 
for a group of interacting wells directly identified from AI tools. 
The selection was made according to geo-location information 
to ensure that selected wells had a high inter-related behavior. 
Fuzzy clustering was applied on operational data to verify assumed 
wells interaction and discover some new interactions. It is worth 
mentioning that some FIS findings when applied to well interaction 
detection resulted contrary to the geo-localization indication. 
However, after consulting with company production and reservoir 
expert engineers, the FIS results were confirmed by the presence of 
rock discontinuities among field formations. Two gas injector wells 
were included in the set as they are placed in the selected area.

Following the procedure described above, models for six 
interconnected wells were identified. The overall algorithm was 
configured with just one day of delay in all variables avoiding 
cumulative error during predictions. Total data set corresponds to 
336 days of field operation. 300 days of this set of data were used 
to identify the model, and the other 36 days were used to validate 

4. REsULTs
Well production FIS Error

Well-01gas

Well-01oil

Well-01wat

Well-02gas

Well-02oil

Well-02wat

Well-03gas

Well-03oil

Well-03wat

Well-04gas

Well-04oil

Well-04wat

Well-05gas

Well-05oil

Well-05wat

GASoverall

OILoverall

WATERoverall

6.92%
5.05%
8.31%
6.44%
7.52%
7.79%
5.27%
4.11%
9.82%
6.08%
11.25%
8.24%
7.80%
5.15%
6.28%
6.19%

14.46%
12.13%

8.09%
5.44%
4.91%
6.45%
4.38%
7.73%
6.84%
6.02%
6.51%
6.79%
5.11%
4.91%
6.88%
5.59%
9.50%
12.83%
11.71%
12.46%

ANN Error

Table 1. Models error in forecasting production for 
five wells.

the model. For FIS models, 4 clusters were selected as inference If-
Then rules structure. The ANN models have 3 neurons in the hidden 
layer, and 3 total layers (input, hidden and output).

After the model identification process, the accuracy of each model is 
assessed by comparing the model predicted value and the real value 
of the validation data set. Table 1 shows forecasting errors for FIS 
and ANN models of several wells. The results are grouped according 
to the corresponding well production. At the end of the table, the 
relative errors for the models that predict the overall production of 
water, oil and natural gas of all producer field are shown. As it was 
mentioned before, the overall production data is required to interpret 
the contribution of each well in overall production.
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Figure 3. FIS and ANN models for produced oil from WELL 03.
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The forecast task is run for FIS and ANN models. For this purpose, 
models start with the last “known” data (data from day 302), and the 
prediction is performed. Forecasting continues running using past 
prediction values, i.e., all values predicted by the model are used 
as valid past data for future prediction. This fact could conduct to 
an error cummulative effect, whenever the model parameters are 
wrong. Therefore, to use past model predictions for future prediction 
is a critical task for any model. As it can be seen from forecast 
results, the current models have shown good behavior regarding 
real data. In Figure 3 and Figure 4, the results of forecasting for 
FIS and ANN models of two producer wells (WELL 01 and WELL 02 
respectively) are shown. Each figure compares the results for both 
AI tools. Such comparison is used later as a criterion to select the 
model providing the best forecast. Thus, both models are solved in 
parallel to rely on the better forecast as the valid prediction for the 
next-time step.  In Fig. 3, the FIS model showed better performance 
than the ANN model, but in Fig. 4, the behavior is opposite. It shows 
that forecasting performance is not determined by the AI tool, but 
for the quality of data. Then, it is proved that the algorithm has a 
non-arbitrary behavior.

In addition, after reviewing Table 1, it is possible to state that there 
is not a best model between FIS and ANN for all the wells. It is 
possible so state that the FIS models capture specific behavior 
of the production while the ANN models represent an average 
trend of well production. This fact enables using both kinds of AI 
models to obtain a better well production forecast. Hence, the best 
performance of each AI tool is provided in accordance with available 
data for each forecast. The specific behavior capture and average 
trend modeling are complementary tasks that contribute to improve 
the final forecast. It should be noted that the model forecast could 
be an average or a specific prediction regarding the use of ANN or 
FIS. However, the global performance seems an average from the 
combination of both tools. This action produces a filtering effect 
resulting in softer predictions with a trend to real data of each 
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Figure 4. FIS and ANN models for produced water from WELL 02

production stream. Furthermore, the input transfer from inputs 
to model prediction of the inherent noise present in the data set is 
significantly reduced.

CONCLUsIONs
This work proposes a methodology to identify a combined FIS 
and ANN model to predict well production in an oil field. The 
methodology includes a novelty pre-processing of data in order 
to impute data at absent or erroneous registers in the original 
database. The aim of that imputation is to obtain the most precise 
information representing natural dynamic behavior of the field, 
taking into account the available production information. The data 
imputation previously applied to the data base avoids identify specific 
operational policies, which are totally unpredictable in a typical oil 
production field. Conversely, data imputation used hereon operates 
from the core dynamic behaviors of the production field.

A random search is used to find the significant variables to be used as 
model input (regressor) for each well model. This process deletes a 
variable randomly and compares the validation error with previously 
identified models. The random search is carried out a finite number 
of times. At the end of that procedure, the model with best accuracy 
to represent just one producer well is selected.

For each well, a FIS and an ANN model are identified for each 
produced substance. The FIS models are capable of predicting 
specific behaviors, while the ANN models are able to forecast an 
average behavior. Those properties make them an interesting tool to 
combine each forecast result and obtain the best accurate prediction 
of the fluid phase production.



C T& F Vol .  9  Num . 1  June 2 01 9 35

Ec op e t r o l

REFERENCEs
[1] X. Ma, Z. Borden, P. Porto, D. H. N. Burch, P. 
Benkendorfer, L. Bouquet, P. Xu, C. Swanberg, L. 
Hoefer, D. Barber and T. Ryan, "Real-Time Production 
Surveillance and Optimization at a Mature Subsea Asset," 
SPE Intelligent Energy International Conference and 
Exhibition. Aberdeen, Scotland, UK, 2016. 

[2] C. M. Shawn and T. I. Urbancic, "Shawn C. Maxwell and 
Theodore I. The role of passive microseismic monitoring 
in the instrumented oil field," The Leading Edge, vol. 20, 
pp. 636-639, 2001. 

[3] D. Wang, A. B. Al-katheeri, S. Al-Nuimi and A. Dey, 
"The Design and Implementation of a Full Field Inter-Well 
Tracer Program on a Giant UAE Carbonate Oil Field," Abu 
Dhabi International Petroleum Exhibition and Conference, 
UAE., 2015. 

[4] R. Asadollahi, "Predict the flow of well fluids. A big 
data approach," MAster thesis. University of Stavanger-
Norway, 2014. 

[5] S. Grossberg, "Adaptive pattern classification and 
universal recording: I. Parallel development and coding 
of neural feature detectors," . Biological Cybernetics, vol. 
23, no. 4, pp. 187-202, 1979. 

[6] A. F. Obando, Databases reconstruction from 
operating modes recognition in dynamic processes, 
Master thesis. Universidad Nacional de Colombia, 2015, 
2015. 

[7] L. Ljung, "System Identification: Theory for the User,," 
ser. Prentice-Hall Information and System Sciences 
Series. Pearson Education Canada., 1987. 

[8] D. Driankov, H. Hellendoom and M. Reinfrank, An 
introduction to fuzzy control. Springer-Verlag, Springer-
Verlag, 1993. 

[9] T. Masters, Practical neural network recipes in C++., 
Morgan Kaufmann, 1993. 

[10] C. D. Zhou, X. Wu and J. Cheng, "Determining 
reservoir properties in reservoir studies using a fuzzy 
neural network," Society of Petroleum Engineering, 
paper SPE 26430 presented at the 68th Annual Technical 
Conference, Houston, TX, no. October, pp. 3-6, 1993.
 
[11] E. T. Fonseca, M. M. B. R. Vellasco, P. C. G. D. Vellasco 
and S. a. a. L. De Andrae, "A neuro-fuzzy system for steel 
beams patch load prediction," Proceedings - HIS 2005: 
Fifth International Conference on Hybrid Intelligent 
Systems, pp. 110-115, 2005. 

[12] M. Negnevitsky, "Hybrid neuro-fuzzy systems: 
Heterogeneous and homogeneous structures," 2009 WRI 
World Congress on Computer Science and Information 
Engineering, CSIE 2009, vol. 2, pp. 533-540, 2009. 

[13] S. D. Nguyen and D. B. Choi, "Design of a new adaptive 
neuro-fuzzy inference system based on a solution for 
clustering in a data potential field," Fuzzy Sets and 
Systems, vol. 1, pp. 1-23, 2015. 

[14] M. Oroian, "Influence of temperature, frequency 
and moisture content on honey viscoelastic parameters 
Neural networks and adaptive neuro-fuzzy inference 
system prediction," LWT - Food Science and Technology, 
vol. 63, no. 2, pp. 1309-1316, 2015. 

[15] W. Pootrakornchai and S. Jiriwibhakom, "Online 
critical clearing time estimation using an adaptive 
neurofuzzy inference system (ANFIS)," International 
Journal of Electrical Power & Energy Systems, vol. 73, 
pp. 170-181, 2015. 

[16] P. Vourimaa, T. Jukarainen and E. Karpanoja, 
"Neurofuzzy system for chemical agent detection," 
IEEE Trans-actions on Fuzzy Systems, vol. 3, no. 4, p. 
415–424, 1995. 

[17] H. Chen, J. Fang, M. Kortright and D. Chen, "Novel 
approaches to the determination of Archie parameters 
ii: Fuzzy regressor analysis," SPE Advanced technology 
series paper SPE 26288, vol. 3, no. 01, pp. 44-52, 1995. 

[18] H. Xiong and S. Holditch, "An investigation into the 
application of fuzzy logic to well stimulation treatment 
design," SPE Computer Applications paper SPE 27672 
presented at the 1994 Permian Basin Oil and Gas 
Recovery Conference, Midland,TX, 1995. 

[19] R. Ata, "Artificial neural networks applications 
in wind energy systems: a review," Renewable and 
Sustainable Energy Reviews, vol. 49, pp. 534-562, 2015. 

[20] R. Giri, A. Chowdhury, A. Ghosh, S. Das, A. Abraham 
and V. Snasel, "A modified invasive weed optimization 
algorithm for training of feed- forward neural networks 
Systems Man and Cybernetics (SMC)," 2010 IEEE 
International Conference on, pp. 3166-3173, 2010. 

[21] N. Norhalim, Z. Ahmad and M. M. Don, "Feed-
forward neural network modeling and optimization 
using genetic algorithm: Enzymatic hydrolysis of xylose 
production,"Technology, Informatics, Management, 
Engineering, and Environment (TIME-E), International 
Conference on IEEE, pp. 208-221, 2013. 

[22] A. E. P. Villa and I. V. Tetko, "Efficient Partition of 
Learning Data Sets for Neural Network Training," Neural 
networks: the official journal of the International Neural 
Network Society, vol. 10, no. 8, p. 1361–1374, 1997. 

[23] Y. Zhang, Y. Yin, D. Guo, X. Yu and L. Xiao, 
"Crossvalidation based weights and structure 
determination of Chebyshev-polynomial neural networks 
for pattern classification," Pattern Recognition, vol. 47, no. 
10, p. 3414–3428, 2014. 

[24] F. West, Concepts and application of fuzzy inference 
systems”, (2015),, Ny Research Press, 2015. 

[25] M. Pena, F. di Sciascio and R. Carelli, "Structure 
identification of a takagi-sugeno fuzzy model; (in 
spanish)," VIII Latin American Congress of Automatic 
Control, Chile, vol. 2, 1998. 

[26] C. M. Sierra and H. Alvarez, "Including an Index 
for Estimating Uncertainty , Distribution and Cohesion 
of Data in Fuzzy (In Spanish),"Avances en Sistemas e 
Informatica, vol. 4, no. 1, pp. 47-58, 2007. 

[27] E. Zuluaga, H. Alvarez and J. D. Velasquez, 
"Prediction of permeability reduction by external particle 
invasion using artificial neural networks and fuzzy 
models,"Journal of Canadian Petroleum Technology, vol. 
41, pp. 19-24, 2002. 

[28] C. M. Sierra and H. Alvarez, "Two Fuzziness 
Indexes Proposed by Kaufmann : observations about 
them,"Journal of Computer Science & Technology, vol. 
9, no. 1, pp. 17-20, 2009. 

[29] W. W. Weiss, R. S. Balch and B. A. Stubbs, 
"How artificial intelligence methods can forecast oil 
production," SPE/DOE Improved Oil Recovery Symposium. 
Society of Petroleum Engineers, pp. 1-16, 2002. 

[30] J. Yu, A. Mustafa, J. Yang, D. Zhao, T. Suhy and 
M. Hefner, "An application of an artificial intelligence 
program for bailing operation management in west 
Virginia," SPE Eastern Regional Meeting. Society of 
Petroleum Engineers, 1898. 

[31] R. Elemo and J. Elmtalab, "A practical artificial 
intelligence application in EOR projects," SPE Computer 
Applications, vol. 5, no. 05, pp. 17-21, 1993. 

[32] R. J. Boomer, "Predicting production using a 
neural network (artificial intelligence beats human 
intelligence),"Petroleum Computer Conference. Society 
of Petroleum Engineers, 1995. 

[33] E. Ouahed, A. Kouider, D. Tiab, A. Mazouzi and 
S. A. Jokhio, "Application of artificial intelligence 
to characterize naturally fractured reservoirs," SPE 
International Improved Oil Recovery Conference in Asia 
Pacific. Society of Petroleum Engineers, 2003. 

[34] S. Mohaghegh, "Recent Developments in Application 
of Artificial Intelligence in Petroleum Engineering," 
Journal of Petroleum Technology, vol. 57, no. April, pp. 
86-91, 2005. 

[35] A. Popa, R. Ramos, A. B. Cover and C. G. Popa, 
"Integration of artificial intelligence and lean sigma 
for large field production optimization: Application to 
kern river field," SPE Annual Technical Conference and 
Exhibition. Society of Petroleum Engineers, 2005. 

[36] G. Zangl, M. Giovannoli and M. Stundner, "Application 
of artificial intelligence in gas storage management,"SPE 
Europec/EAGE Annual Conference and Exhibition. Society 
of Petroleum Engineers, pp. 12-15, 2006. 

[37] H. Park, J. S. Lim, J. M. Kang, J. Roh and B. Min, "A 
hybrid artificial intelligence method for the optimization 
of integrated gas production system,"SPE Asia Pacific Oil 
& Gas Conference and Exhibition. Society of Petroleum 
Engineers, 2006. 

[38] D. Liu and J. Sun, The control theory and application 
for well patern optimization of heterogeneous sandstone 
reservoirs, Springer Geology, 2017. 

[39] S. Al-Fattah and H. Al-Naim, "Artificial-intelligence 
thecnology predicts relative permeability of giant 
carbonate reservoirs,"SPE Reservoir Evaluation & 
Engineering, vol. 12, pp. 4-7, 2009. 

[40] C. M. Piovesan and J. B. Kozman, "Cross-industry 
innovations in artificial intelligence,"SPE Digital Energy 
Conference and Exhibition. Society of Petroleum 
Engineers, pp. 19-21, 2011. 

[41] S. D. Mohaghegh, O. S. Grujic, S. Zargari and A. 
K. Dahaghi, "Modeling, history matching, forecasting 
and analysis of shale reservoirs performance using 
artificial intelligence,"SPE Digital Energy Conference 
and Exhibition. Society of Petroleum Engineers, 2011. 

[42] G. J. Olivares Velazquez, C. J. Escalona Quintero 
and E. R. Gimenez, "Production monitoring using artificial 
intelligence,"SPE Intelligent Energy International. Society 
of Petroleum Engineers, pp. 27-29, 2012. 

[43] S. Esmaili, A. Kalantari Dahaghi and S. D. 
Mohaghegh, "Forecasting, sensitivity and economic 
analysis of hydrocarbon production from shale plays 
using artificial intelligence & data mining,"SPE Canadian 
Unconventional Resources Conference. Society of 
Petroleum Engineers, pp. 1-9, 2012. 

[44] Y. Gomez, Y. Khazaeni, S. D. Mohaghegh and R. 
Gaskari, "Top down intelligent reservoir modeling,"SPE 
Annual Technical Conference and Exhibition. Society of 
Petroleum Engineers, pp. 4-7, 2009. 

[45] A. K. Dahaghi, S. D. Mohaghegh and Y. Khazaeni, 
"New Insight Into Integrated Reservoir Management 
Using Top-Down, Intelligent Reservoir Modeling 
Technique: Application to a Giant and Complex Oil Field 
in the Middle East,"SPE Western Regional Meeting, 2013. 

[46] A. Mirzabozorg, L. Nghie, Z. Chen, C. Yang and 
H. Li, "How does the incorporation of engineering 
knowledge using fuzzy logic during history matching 
impact reservoir performance prediction?,"SPE Heavy 
Oil Conference-Canada. Society of Petroleum Engineers, 
2014. 

[47] C. Enyioha and E. Ertekin, "Advanced well structures: 
An artificial intelligence approach to field deployment 
and performance prediction,"SPE Intelligent Energy 
Conference & Exhibition. Society of Petroleum Engineers, 
p. 13, 2014. 

[48] A. Shahkarami, S. D. Mohaghegh, V. Gholami and S. 
A. Haghighat, "Artificial intelligence (AI) assisted history 
matching,"SPE Western North American and Rocky 
Mountain Joint Meeting. Society of Petroleum Engineers, 
pp. 16-18, 2014. 

[49] S. Buuren, Flexible data imputation of missing data, 
Chapman & Hall /CRC, 2012. 


