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ABSTRACT 
Reverse time migration in zones with rugged topography is a 
method that presents some challenging issues.  We present 
an analysis of reverse time migration in transformed domains, 
in particular for a technique that goes from an Euclidian to a 
Riemannian scenario, as suggested by some authors in previous 
literature. Computational results show that there is not significant 
improvement in the final image when the Riemannian approach is 
used as compared with images obtained with an Euclidean metric. 
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RESUMEN
La migración en tiempo reverso en zonas con topografía accidentada 
es un método que presenta algunos problemas desafiantes. 
Presentamos un análisis de la migración en tiempo reverso en 
dominios transformados, en particular para una técnica que va de un 
escenario euclidiano a uno Riemanniano, como lo sugieren algunos 
autores en la literatura previa. Los resultados computacionales 
muestran que no hay una mejora significativa en la imagen final 
cuando se utiliza el enfoque Riemanniano en comparación con las 
imágenes obtenidas con una métrica euclidiana
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Reverse time migration (RTM) is an imaging technique that was 
introduced independently by several works around the 1980’s [1]-[4], 
but has been extensively used only in the last two decades because 
of the computational resources needed to implement it. Despite its 
high computational cost, RTM is nowadays the algorithm of choice 
to produce seismic images in complex areas because it can be used 
in zones with strong variations in the velocity of propagation, and 
can map subsurface structures with any dip to create good images 
of zones of interest like those under and around salt domes where 
hydrocarbon reservoirs can be found. The classical RTM algorithm 
produces images of the earth’s subsurface by modelling the source 
wave field and back propagation of registered data at surface as 
seismograms. This procedure uses the wave equation (acoustic or 
elastic) where each seismogram´s trace (inverted in time) enters 
as the source term. When this propagation procedure registers all 
seismic traces simultaneously, it produces what is known as back-
propagated wave field Pb (x,y,z,t), where x, y and z are the spatial 
coordinates and t is time. This field carries information about the 
interfaces that produced the reflections. To create the RTM image, 
the simulation of the seismic source propagation is also necessary. 
The functional form of the artificial seismic pulse is modeled 
mathematically and introduced as the source term in the same wave 
equation used for the back propagation. The result is the forward 
propagated field, Pf (x,y,z,t). Pf and Pb should coincide in space and 
time on the sub surface regions where the field was reflected.

Before the use of RTM algorithms was popular, the most common 
techniques used to produce seismic images were based on field 
extrapolation in the Fourier domain. This method is known as 
One-Way Wave Equation, OWWE, or wave field extrapolation as it 
takes the field that was registered in the surface by the seismic 
geophones and extrapolates it back into the Earth’s interior to 
predict the location of the reflecting structures or strata where 
they came from [5]-[7]. This method is much faster and requires 
less memory, but has some drawbacks: it cannot handle media with 
strong horizontal variation in wave velocity and also fails to produce 
good images in the regions of the Earth’s subsurface where the 
strata have large dips [7]. These zones can be found in practice, for 
example near faults, in over-thrusts or under the salt domes, and 
are considered of special interest in the hydrocarbon exploration 
industry because they can form oil traps. As the OWWE methods 
use approximation solutions to the wave equation where the wave 
field propagation is computed only in one direction (usually down), 
the zones under the salt domes cannot be well illuminated. In 
order to improve the illumination of these zones, Sava and Fomel 
[8] introduced a modification of the OWWE method consisting in 
taking the OWWE equations into a Riemannian scenario where 
the coordinate system used is not Cartesian but curvilinear. This 
is achieved by modifying the Laplacian of the wave equation by 
introducing a metric tensor. Thus, Sava and Fomel [8] obtained 

a one-way wavefield extrapolation method that can be used to 
propagate the seismic waves in arbitrary directions, in contrast to 
downward continuation, which is used for waves propagating in 
the vertical direction. These semi-orthogonal coordinates systems 
include, for example, the ray coordinate systems in which the wave 
propagation occurs mainly along the extrapolation direction. The use 
of a semi-orthogonal coordinates system in this approach can lead 
to situations where the coordinates systems undergo problematic 
bunching and singularities. To solve these problems, Shragge [9] 
introduced the non-orthogonal Riemannian field extrapolation, a 
procedure that introduces singularity-free coordinate meshes. 

In the decade of 2010’s, the OWWE methods became less popular 
mainly because the available computational resources introduced 
the use of more powerful methods such as RTM, which are based on 
the solution of a more complete wave equation without the limiting 
approximations required by former extrapolation methods. The 
RTM method is better because the complete solution of the wave 
equation takes into account the up-going and down-going wave 
fields. Apparently, there was no longer a need to use non-orthogonal 
coordinates systems to illuminate complex zones.

Nevertheless, it has been pointed out recently [10] that the 
application of the RTM method in zones with strong variations 
on surface elevation (rugged topography) requires the forced 
application of a Cartesian mesh to a curved domain and this 
can lead to an incorrect positioning of the subsurface structures 
and also give rise to artifacts in the final images. To solve these 
problems, Shragge [10] proposed a coordinate transformation to 
turn the rugged acquisition surface into a flat one by means of a 2D 
complex variable transformation, namely, the Schwarz-Christoffel 
transformation. With this approach, the RTM algorithm is applied 
in a geometrically transformed domain where the wave equation is 
more general and the metric of the space is no longer Euclidean but 
Riemannian. In this way, better RTM images are obtained although 
at the expense of increased computational time. Another drawback 
of this approach is that the Schwarz-Christoffel transformation 
cannot be generalized on a 3D scenario. A more general approach 
was introduced by Shragge [11], in which the Riemannian acoustic 
wave equation was solved for 3D domains. We implemented the 
RTM algorithm based on that type of transformation and also in 
Cartesian coordinates to compare both scenarios and determine 
their advantages and disadvantages. In the first scenario we present 
a simple map that transforms a generally curved acquisition surface 
into a flat one. The curved domain is transformed into a rectangular 
domain where a uniform grid can be applied to solve the acoustic 
wave equation with a generalized Laplacian. When the three steps 
of the RTM are completed in this rectangular domain (forward 
modelling, back propagation and imaging condition), we map the 
final image into the curved domain, i.e., into the physical domain.

INTRODUCTION1

2. THEORETICAL FRAMEWORK
The transformation that maps a rectangular domain with 
coordinates (ξ1,ξ2) (named computational domain) into the physical 
domain of coordinates  (x1,x2) is:

Where φ(ξ1)=φ(x1) is a smoothed function that represents the curved 
upper boundary of the physical domain.  This transformation is 
depicted in Figure 1.

(1)1 =  1 

(2)2 =  2 + ( 1)
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Figure 1. Straight lines of the rectangular domain are transformed into curved lines in the physical domain.  For example, the 
horizontal line at the top of the computational domain is mapped into the curved heavy line in the physical domain, which is 
the mountain border. 
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Note from (1) that Δx1= Δξ1 and from Equation 2 that if we vary 
ξ2 along a vertical line with ξ1=const we have φ=const, which 
implies Δx2= Δξ2, i.e., the step size in space is not affected by the 
transformation.

Using change of variables from Equation 1 and Equation. 2 we find 
the new expression for the Laplacian operator by using chain rule 
or using the standard form in generalized coordinates. The acoustic 
wave equation for the transformed domain is given by

Where

Equation 4 gives the generalized Laplacian, where |g| is the absolute 
value of the determinant of the metric tensor gij, given by

In order to re-write the wave equation, we need the contravariant 
representation of the metric tensor gij=(gij)-1 [12], and a sum over 
repeated indexes is implied. Note that vξ

2 is the square of the velocity 
vector, which, in the isotropic case, is a scalar value and therefore 
it is not transformed.  However, its arguments are transformed.

Expanding the Laplacian, we can re-write Equation 4 in a more 
convenient way, as

(3)∇2 −
1

2

2

2 =  

(4)∇ 
2=

1
√| |  ( √| | 

 
 ),   , = 1,2 

(5)=   

(6)∇ 
2=

 
+  

  2

  , 

(7)=
1

√| |  
(√| | ). 

where

The elements ζi are also geometric coefficients that are computed 
only one time, as well as gij. For our specific transformation, given 
in Equation 1 and Equation 2, we have

We can now solve the Equation 3 numerically in the computational 
domain, i.e., in a rectangular domain, and implement the classic 
RTM algorithm.

To obtain the RTM image I(x1,x2), the standard cross correlation 
between the forward Pf and the backward Pb propagated fields 
can be used:

where the first sum is over receptors, the second over sources, and 
the integral is over time. The image I(x1,x2) can be obtained from 
I(ξ1,ξ2), just by transforming the arguments from (ξ1,ξ2) to (x1,x2) using 
the transformation Eqution 1 and Equation 2.

The stability condition for this method can be derived in a heuristic 
way [11]: the standard Courant condition is

(8)= [ 1 −
1

−
1

1 + (
1
)2 ], 

(9) 1 = 0,   

(10) 2 = −
2

1
, 

(11) det( ) = 1. 

(12)( 1, 2)=∑ ∑ ∫ ( 1, 2, ) ( 1, 2, ),  
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where

so Equation 13 gives:

(14) ∆ = [∆ 1
−2 + ∆ 2

−2]−1/2,  ∆ ≈ ∆  

(15)
 

∆ ≤
1

arg [( 1 ∆ )−2

+( 2 ∆ )−2]−
1
2

 ,  

3. RESULTS
To apply our method, we propose two experiments, based on the 
Canadian Foothills model, a synthetic velocity model for a zone in 
British Columbia that shows several complex structures common 
in that region of Canada, which was used by Gray and Marfurt 
[13] to apply Kirchhoff migration (Figure 2). This model presents 
a topographic variation from -0.8 km to 0.6 km around the mean 
height. To implement following experiments, we used a section from 
5 km to 21 km to exclude from the image the absorbing boundary 
region.

Experiment 1. In this case we used the topography profile of the 
Foothills model and replaced the original velocity values for a 
2-layer model of constant velocity separated by a straight horizontal 
interface. This numerical experiment is intended to examine the 
details of the image obtained with RTM in Riemannian coordinates, 
which is a good starting point. The interface of the 2 layers is located 
at 5 km depth. The velocity of the upper layer is 4 km/s and the other 
is 5 km/s. The step sizes for these grids were dx = 0.075 km and dz = 
0.05 km. The time step is 0.001s. The source used is a Ricker pulse 
with a central frequency of 6 Hz. We use 24 shots to cover the model.

The RTM result for the Riemannian algorithm is shown in Figure 3, 
while the result of the purely Cartesian version is shown in Figure 4.

The upper curved border should be smoothed in the Riemannian case 
as the calculation of the metric tensor implies the computation of 
the derivative along the surface topography. We also explored the 
application of cubic splines or Bezier curves to the mountain profile 
expecting to get more precise results, but these were not much 
better. The mountain profile of Figure 4, on the contrary, is the exact 
profile of the mountain in the sub-sampled Canadian Foothills model. 
Comparing Figures 3 and 4, it is evident that the RTM image for 
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Figure 2. The Canadian Foothills. This is a sub-sampled 
version of size 334x200. The original model size is 1169x1000.

Figure 3. Riemannian RTM image for a two-layer model with 
an upper boundary that corresponds to a section of the full 
Canadian Foothills model. 

Figure 4. Cartesian RTM image for a two-layer model with 
an upper boundary corresponding to a section of the full 
Canadian Foothills model.
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the Riemannian coordinates produced a reflecting interface more 
irregular than the image of the Cartesian case. On the one hand, this 
is caused by the distortion of the seismic waves due to effects of 
numerical dispersion, and, on the other hand, due to the fact that in a 
curved mesh it is harder to represent the straight line corresponding 
to the plane interface. The Cartesian image shows some shadows 
(or artifacts) in places away from the interface (the interface is the 
only region where we expect to see something in this case). These 
artifacts can be produced for the multiple wave reflections over the 
border of the mountain. As in the Riemannian scenario the border is 
smooth, it is obvious to expect less artifact there.
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Experiment 2. This numerical experiment also involves the Canadian 
Foothills velocity model shown in Figure 2 although using its full 
complex inner structure. This model should be transformed into 
the Riemannian domain, i.e., the computational domain, using 
the transformation rule given by Equation 1 and Equation 2. The 
transformed model is shown in Figure 5.

The RTM image for the Cartesian case is shown in Figure 6, and the 
image for the Riemannian case is shown in Figure 7. The values of 
dx, dz, dt, frequency and the size of the grid are the same that we 
used for Experiment 1.

(13) ∆ ≤
∆

,
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Figure 5. Transformation of the Canadian Foothills model into 
the computational domain. The topography profile of Figure 2 
is mapped into a horizontal line and all the points below are 
deformed in a similar way.

Figure 6. RTM image for sub-sampled Canadian Foothills 
velocity model in the Cartesian scenario. This is a sub-
sampled version of size 334x200.

Figure 7. RTM image for sub-sampled Canadian Foothills 
velocity model in the Riemannian scenario.

Figure 8. A section of the Canadian foothills model.

Figure 9. RTM image for the model shown in Figure 8. This 
result was calculated with the Cartesian algorithm.
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Comparing the Figures 6 and 7, there is no visible image 
improvement in the Riemannian scenario. The near surface details 
of the Cartesian image seem to be better and the amplitude of the 
image of the reflector is more continuous Furthermore, it is not 
true that the curved grid is more suitable to describe scenarios 
with rugged topography as the mountain border in the Riemannian 
domain is not the original one but a smoothed version.  The resolution 
of the reflectors in Figures 6 and 7 is not good because the spatial 
sampling used in this experiment implies that the frequency of the 
Ricker pulse must be low, so fine structures cannot be well resolved.

To improve the resolution of the reflectors, we applied the Cartesian 
RTM algorithm to a section of the full model (no subsampled), 
which is shown in Figure 8. In this case the sampling interval in the 
horizontal direction is dx=0.015 km and in the vertical direction it is 
dz=0.010 km. Since these parameters are smaller than those used 
in Experiments 1 and 2, a higher frequency is used (25 Hz). The result 
is shown in Figure 9. It was not possible to obtain an analog image 
using the Riemannian scenario because for this set of parameters 
the modelling not was not stable, and the time sampling required 
for a stable modeling was too small and impractical.
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Figure 10. (a) RTM image plus Laplacian filtering (b) RTM image plus Laguerre-Gauss filtering

POST-PROCESSING MIGRATED MODELS

The cross-correlation imaging condition produces, in migrated 
images, spatial low-frequency noise, (artifacts).  This is caused by 
the superposition of head, diving and backscattered waves. These 
artifacts can hide important details in the image and affect its 
(image) interpretation. 

The reduction or elimination of artifacts has been widely studied 
and several techniques have been proposed.

We use the Laplacian filtering proposed by Youn and Zhou [14] and 
the Laguerre-Gauss filtering described in Paniagua et al. [15]. We 
compare and analyze the images obtained by the these filtering 
methods. 

The Laplacian filtering has been used for an edge enhancement in 
digital image processing [16]. 

It also shows good attenuation of the migration artifacts. This 
technique has two major effects: (1) it removes the low-frequency 
information and (2) it increases the high-frequency noise [17],[18]
Laguerre-Gauss filtering is a post-processing technique that avoids 
the high frequency noise and reduces the artifacts due to its property 
of being an isotropic bandpass filter [15],[19].

To show the effects of the Laplacian and Laguerre-Gauss filtering 
in the migrated image, we applied them to the synthetic dataset. 
Figure 10 shows the comparison of the results obtained by applying 
both filtering techniques.  

Figure 10a shows the image obtained by applying the proposed 
method using the zero-lag cross-correlation imaging condition and 
the Laplacian filtering.  The low-frequency artifacts are reduced but 
in different parts there is some high frequency noise. 

CONCLUSIONs
	 The images obtained by the RTM algorithm in Riemannian 
coordinates for the sub-sampled velocity model are not better that 
those obtained in Cartesian coordinates. When we used the Canadian 
Foothills model without subsampling, the Riemannian stability 
condition implies a very small and impractical time step, so we only 
obtained the RTM in this case for the Cartesian algorithm, without 
finding any advantage in the Riemannian coordinates formulation

	 The numerical experiments show that the time step 
implied by the stability condition depends strongly on the degree 
of smoothness of the mountain profile.  To obtain time steps that 
are suitable for calculation, we must represent the topography with 
curves that do not pass exactly through each point of the true profile, 
so the main objective of the Riemannian method is not achieved.

	 Different transformations from the physical domain to the 
computational domain imply different metric tensors and, in turn, 
different limits for the time step necessary for stability purposes.

The seismic image is improved by applying the Laguerre-gauss 
filtering (Figure 10b). The artifacts are significantly reduced, the 
structures are more defined and enhanced.

Some details are improved in the image using the Laguerre-Gauss 
filter. It should be noted that the artifacts in shallow parts and near 
the reflective event are significantly reduced and the subsurface 
structure is further defined and enhanced. The Laguerre-Gauss 
filter can enhance any small changes in the seismic image and 
preserve the true location of reflections.
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Tecnología para mejorar la 
eficiencia del drenaje en tanques  de 
almacenamiento de hidrocarburos- 

Válvulas Decantadoras.

Reduce arrastres de Hidrocarburo al sistema 
de aguas aceitosas. 

• Disminuye la descarga de productos hacia 
separador API y/o hacia los sistemas de 
tratamiento de SLOP, reduciendo el impacto 
en el tratamiento de aguas residuales; 
especialmente cuando se drenan tanques 
de productos blancos, donde la operación de 
drenaje es difícil de controlar por la mínima 
diferencia de color entre el producto y el 
agua.
• Evita la pérdida de productos debido a error 
humano por olvido de cierre de la válvula de 
drenaje. Cierre automático 
• Menores riesgos a la salud de los operadores 
por menor exposición a la inhalación de 
compuestos orgánicos volátiles 
• Fácil instalación sobre la línea de drenaje 
del tanque, realizando una conexión alterna 
al drenaje normal, corrientes abajo de la 
válvula de bloqueo del tanque. 

Innovac ión  hecha por  Ecopetrol  y 
comercializada por Industrias Tanuzi S.A.

Technology to enhance drainage 
efficiency in hydrocarbon storage 
tanks- Decanting valves.

Reduce Hydrocarbon dragging into the oily 
water system. 

• Reduces discharge of products towards the 
API separator and/or the SLOP treatment 
systems, reducing impact on residual water 
treatment; in particular, when white product 
tanks are drained, where the drainage 
operations are difficult to control because 
of the minimal color difference between the 
product and the water.
• Prevents product loss caused by human 
error when forgetting to close the drainage 
valve.  Automatic close 
• Less health risks for operators due to 
reduces exposure to inhaling volatile organic 
compounds 
• Easy installing on the tank’s drainage line, 
making an alternate connection to normal 
drainage, downstream of the tank’s blocking 
valve. 

Innovation developed by Ecopetrol and 
commercialized by Industrias Tanuzi S.A.


