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ABSTRACT 
Full waveform inversion (FWI) is a tool for the inversion of seismic 
data. There are several sources of uncertainty in the results 
provided by FWI. The quantification of such uncertainties has 
been studied through the resolution matrix (Res), which rests on 
a quadratic approximation that interprets the Hessian matrix as 
the posterior covariance matrix. Despite efforts in the use of Res, 
there is no published analysis of the uncertainties contained in 
the full correlation matrix, (R). Our approach leads to build the 
full R matrix, which, at the end of the day, is  the final quantity 
that includes all the information associated with uncertainties. 
We focused on uncertainties related to variation in the starting 
models of the FWI, and thus propose a method to study the full R 
matrix, which is-called the Density of Correlation Map, D. By using 
the D map, we found that the highest uncertainty zones in the 
FWI inverted model are near the sources, the model boundaries, 
and the interfaces. We argue that D can be a complement for the 
study and estimation of uncertainties in FWI.
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ANÁLISIS DE LA MATRIZ 
DE COVARIANZA EN 
INVERSIÓN DE ONDA 
COMPLETA (FWI) A 
TRAVÉS DE MAPAS 
DE DENSIDAD DE 
COVARIANZA

RESUMEN
a inversión por campo de onda completa (FWI) es una herramienta 
para la inversión de datos sísmicos. Hay varias fuentes de 
incertidumbre en los resultados proporcionados por FWI. La 
cuantificación de tales incertidumbres se ha estudiado a través 
de la matriz de resolución (Res), que se basa en una aproximación 
cuadrática que interpreta la matriz Hessiana como la matriz de 
covarianza posterior. A pesar de los esfuerzos en el uso de Res, el 
análisis de las incertidumbres contenidas en la matriz de correlación 
completa (R) no existe hasta ahora. Nosotros empleamos varias 
realizaciones para estimar las incertidumbres de los resultados de 
FWI. Nuestro enfoque lleva a construir la matriz R completa, que 
es al final, la cantidad que encierra toda la información asociada 
a las incertidumbres. Nos enfocamos en las incertidumbres 
relacionadas con las variaciones en los modelos iniciales de FWI, 
y proponemos un método para estudiar la matriz R completa, 
denominado Mapa de Densidad de Correlación, D. Al utilizar el 
mapa D, encontramos que las zonas de más alta incertidumbre en 
los modelos invertidos están cerca de las fuentes sísmicas, de las 
interfaces y de las fronteras artificiales. Destacamos que D puede 
servir como un complemento para el estudio y la estimación de 
incertidumbres en FWI.

Full Waveform Inversion | Resolution |  
Correlation Matrix | 
Inversión de Onda Completa |  Resolución 
| Matriz de Correlación | 

A R T I C L E  I N F O :  
Received : June 10, 2019
Revised : January 27, 2020
Accepted : April 08, 2020
CT&F - Ciencia, Tecnologia y  Futuro Vol 10, Num 1 June 2020. pages 93 - 106
DOI : 10.29047/01225383.163



Vol .  10 Num . 1  June 2 0 2 0

94 Ec op e t r o l

Full waveform inversion (FWI), has become a very popular tool for 
the inversion of parameters from seismic data given its ability to 
face non-linear ill-posed inverse problems, [1]. FWI is a process 
where the wave velocity is estimated through an iterative procedure 
consisting in the comparison of simulated (synthetic) and observed 
(real) seismic data.  This method started in the early 80’s, [2]; [3]; it 
has been used for velocity estimation in several applications in 2D 
and 3D seismic situations ([1], Brossier et al. [4], Brenders et al. [5], 
Vigh et al. [6]) and, despite its well-known requirements of large 
computational resources, it has been broadly used in Engineering, 
Vigh et al. [6] and for crustal scale geophysical studies, [7]. 

For most practical applications, FWI is a gradient-based optimization 
scheme used to find the velocity model that best approaches the 
minimum of a misfit function. For example, some implementations 
use a quasi-Newton method such as L-BFGS [8], [9], to compute the 
search direction by successive approximations of the Hessian matrix, 
while adjoint methods are used to compute the misfit function 
gradients, Brossier et al. [4], [10]. One of the most important issues 
associated with the use of FWI is the so-called cycle skipping. Cycle 
skipping, [11], Boonyasiriwat et al. [12], appears when the maximum 
time shift between synthetic and observed data is larger than half a 
period. These phase shifts may affect the search for the minimum of 
the misfit function, avoiding the convergence of the method. One way 
to minimize cycle skipping effects is through the use of multiscale 
approaches, Boonyasiriwat et al. [12].

Although it is frequently ignored, an important ingredient of FWI 
is the quantification of uncertainties, which has been traditionally 
studied through the resolution matrix (Res) [1],[7],[13],[14], 
[15], [16], Abreo et al. [17]. Such notion relies on a quadratic 
approximation of the misfit function, leading to interpret the Hessian 
matrix as the inverse of the posterior covariance. This aimed at 
making the resolution analysis a practical task. The main sources of 
uncertainty in the inversion process are: its ill-posedness nature, the 
election of the initial model, the election of windowing frequencies 
in the multiscale procedure, the approximations made during the 
modeling of the propagation of waves, and the approximations 
to estimate the gradient of the misfit function. As many of the 
aforementioned sources of uncertainty are somehow dependent on 
the implementation, in this paper we focused on the uncertainties 
related to variation in the starting models, by proposing a method 
to infer information from the posterior covariance matrix.
 
The use of the resolution matrix (Res) for the quantification of 
uncertainties in FWI, has not been studies in depth as  compared 
with other topics, [7]. For instance, uncertainty quantification is an 
excellent complement in the interpretation of tomographic images. 
The difficulty to use an overarching method for the quantification 
of uncertainties, is directly related to the non-linear nature of FWI. 
The theoretical treatment of such quantification was fully developed 
by Tarantola's formalism; however, its realistic applications involve 
a large number of parameters, making such formalism non-viable 

from the current practical stand point. One remarkable work 
has been presented by [7]. The +authors show, using a gaussian 
approximation and manipulation over the Hessian, a method for 
quantitative resolution analysis in FWI, which presents substantial 
improvements in computational efficiency and is applicable to any 
misfit function. In such approximation, the Hessian matrix can be 
interpreted as the inverse of the posterior covariance matrix, Cov -1. 
Such interpretation was suggested by [18] only for inverse problems 
close to be linear.

[7] defined the diagonal elements Hii (z,x), of the Hessian matrix 
as the local resolution of the model parameter mi at the position 
(z,x); likewise, it was stated that the off-diagonal Hii (z,x), for i≠j, 
“encapsulate” the spatial dependencies between mi and mj at 
different positions xi and xj . They argued: “Large off-diagonal 
elements imply that the simultaneous perturbation of different 
parameters or in different regions can compensate each other, 
leaving the misfit function nearly unchanged”.

In this work we used several (and independent) realizations of FWI to 
estimate the uncertainties in the outcome. This approximation leads 
to build a full covariance matrix, that is, the quantity that includes all 
the information associated to process uncertainty. The covariance 
matrix analyzed herein was obtained from a set of computational 
experiments. We chose a 2D representation of the subsurface, and 
used synthetic data in 100 realizations of the seismic inversion. For 
each realization, we changed the initial model and obtained a data 
set to analyze uncertainties. First, we performed a classical standard 
deviation map (z,x) as a proxy of the uncertainty. Then, we developed 
the Density of Correlation (Density of Covariance) concept to study 
the uncertainties. To lay the foundations of the method, we show 
the full development on an unreal data set as a first approach. We 
think that the initial implementation of our method must be carried 
out on a well-known synthetic set of data to thus assess its main 
features and benefits.

This paper is organized as follows:  We start in section 2 by setting 
the notation and the specific FWI engine used for statistical 
experiments. In section 3, we describe the way chosen to prepare 
the starting models, and a general overview of the methodology 
used in statistical experiments. We calculated and discussed the 
usual quantities, as the mean values and the standard deviations, in 
section 3.2. In section 3.3, we developed the concepts of density of 
covariance map and density of correlation map. This method enables 
the obtaining of data from the covariance and the correlation matrix. 
Through these concepts, a part of the information contained in the 
big covariance matrix, NP2, can be visualized and analyzed by using 
matrices of the size of the velocity models, NP. The results of the 
application of such method to the data obtained in the statistical 
experiments are presented and analyzed in section 4. Finally, the 
conclusions are addressed in section 5.

INTRODUCTION1.
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2. THEORICAL FRAMEWORK 

  (1) 

(2)

3. EXPERIMENTAL DEVELOPMENT

Figure 1. (a) Exact data set of Marmousi model. (b) Exact data set of the Diffractor model.

METHODOLOGY FOR THE SETUP OF INITIAL MODELS AND
FOR THE EXPERIMENTS
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FWI ENGINE USED IN STATISTICAL EXPERIMENTS

We used a 2D representation of the subsurface, which is described 
by nz points along the z axis, and by nx points along the x axis. 
The distances between points are denoted by ∆z, along the z axis, 
and by ∆x, along the x axis. Every velocity model in this work is 
understood as a matrix of size NP= nz x nx. Each velocity element 
will be associated to the physical position (zk ,xl)=(k ∆z,l ∆x). From 
a computational perspective, the velocity model of the subsurface 
will be symbolized by a vector M = (c1 ,… ,cNP ), where each value ci 
will be named as pixel. Each pixel of the vector M will be equal to a 
value of the velocity field, in an ordered way such that (k,l)→ck+nz*l , 
where the pair of indexes (k,l) will be understood as the position, in 
the computational mesh, of the pixel number k + nz * l. A number ns 
of sound sources, with coordinates (zsi ,xsi )  ∀ i=1,…,ns , which generate 
the propagating waves are arranged. In all of our experiments, all 
sources are placed at the same depth zsi ∀ i=1,…,ns. The sources are 
separated by a distance ds, and arranged along the x axis. Together 
with the sources, a number nr of receivers, separated a fixed distance 
dr between them, are placed along the x axis at coordinates(zri ,xri )  
∀ j=1,…,nr. The observed data will be denoted by do. 

The pressure field is symbolized with p(z,x,t). We used a Ricker's 
source function, g(t) = δ(z-zs ) δ(x-xs ), defined by g(t)=(1-2π2  fd

2  t2/
ω2)e - π2f 2d t 2 , with a dominant frequency fd = 15Hz for all the cases 
studied in this paper. All the experiments were done by using a 
numeric solution to the acoustic wave equation.

With such solution we propagate the pressure field in order to get the 
synthetic data dc. FWI makes a comparison between observed and 
synthetic data by iteratively minimizing an error function, denoted by 
E, estimated with a l2-norm. To easy the convergence of the method, 
a multi-scale approach has been employed.

The acoustic wave equation was solved by using the rapid expansion 
method (REM), [19], the pressure field is set at t = 0, for every point 
(z,x), as p=0 and ∂_t  p=0. The gradients ∇E(M) were calculated by 
using the Adjoint State Method described in [20]. In order to do the 
modeling of propagation of energy inside the finite nz x nx spatial 
domain, it is necessary to build artificial boundaries to simulate an 
infinite domain, and to avoid undesirable nonphysical reflections. To 
do this, we used Absorbing (Artificial) Boundary conditions. 

The error function is evaluated for each iteration, as such evaluation 
is aimed at obtaining a good descent direction and making sure 
that the minimization procedure has been reached. We used the 
first Wolfe's condition, which is widely used with such procedure, 
[19],[21],

where we used a1=10-3 and α0=1.0. αk is the step length that can be 
computed by a line-search algorithm [21]. hk is a search direction, 
usually determined by gradient methods, to find it we used L 
-BFGS. The minimization of the error function E(M) around the 
neighborhood of the initial model M0, is usually obtained through a 
Taylor's expansion of E(M). By equating the derivative, respect M, 
of such expansion to zero one gets the step descent [11],

where Hk
−1 is an approximation to the inverse of the Hessian 

matrix, in the k-th step of the inversion, evaluated in M0. The exact 
Hessian matrix, is usually neglected due to its large size and high 
computational cost [22].

We will use as exact data sets: The Diffractor and the Marmousi 
velocity models, and these will be denoted as Mreal, as shown in 
Figure 1. The term “real data” refers to exact data known in advance.
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Figure 2. (a) The fiducial initial model, M0 best, and its fiducial inverted model, MF best, in (c). A perturbed initial model, for k=56, M0
k, 

and its FWI, MF
k, are displayed in (b) and (d), respectively.  (e) It shows (quasi-normal) the distribution of velocities of the initial 

models cube for the pixel (70,20).
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Several initial models can be used as a starting point in FWI. This 
is supposing that fr   ed from a smooth of the Mreal of Figure 1a. 
Figure 3a contains letters A,B,C,D and E, pointing out several 
zones with relevant data from Mreal, which helps the convergence 
of the FWI. This fiducial initial model will be the initial model to 
obtain the best outcome from the FWI process. 

Now, let               be the collection of the nm possible starting 
models for the F W I. The ith pixel of the kth model, M0

k, will be 
labeled by ck

0,i . If the information from the geophysical methods 
is consistent and coherent with the existing geological data, the 
nm aforementioned initial models may be similar but not identical. 
This similarity, considering that the non-linearity involved in FWI 
usually requires a good starting model, allows to argue, as one 
of our working hypothesis, that for a given fiducial starting model 
M0best, the rest of possible initial models                      , for a “successful 
FWI”, may lie “close” to M0 best.

An initial model M0
k (M0

k ≠M0 best ) will be considered “close” to the 
M0 best, if for ith pixel ck

0,i ∈ M0 best , the fractional difference with its 
corresponding ith pixel         ∈M0 best, is smaller than or equal to a 
predefined tolerance perc, namely: 

Thus, the perc value, allows for a discrepancy limit between the 
values of the pixels in M0 best and any other possible initial model. 
Once a M0 best has been chosen, the remaining nm-1 initial models 
were built as random perturbations of the fiducial initial model. 
Each pixel ck

0,i of an initial model M0
k was randomly generated as 

Where Rand(a,b) accounts for a random number in the range (a,b). 
Despite M0 best being obtained directly from the Mreal , by making a 
smoothing, every initial model of the set              , is uncorrelated 
and in section 4.5, the computational proof of this crucial fact, is 
shown explicitly. Such lack of correlation allows us to guarantee 
that every starting model in the experiment is independent and, 
therefore, the results of this work are unbiased.

The value of each of the pixels ck
0,i are  within  the interval

 

In the experiments presented herein, we fixed perc = 14%. To reach 
this number, we started changing perc withdifferent values, from 
1% to 20% ; and perc=14% was the highest value for which FWI 
produced “successful" inversions. The highest values of perc lead 
to dominant cycle skipping effects that affected, and in some cases 
avoided, the convergence of the inversion. We will refer to the 

Figure 3. (a) The fiducial initial model, M0 best , and its fiducial inverted model, MF best , in (c). A perturbed initial model, M0
k, for 

k=56, and its FWI, MF
k, are displayed in (b) and (d), respectively.
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Thus, the cov[ci , cj] matrix contains relevant information about the 
uncertainties that is not included in the analysis of the standard 
deviation map that only takes into account the self-correlation. To 
simplify the analysis, we will work with the correlation matrix R, 
which we estimate as

R matrix carries the same information as covariance matrix, but 
this normalized form helps to understand, among other aspects: 
(a) How the wave velocities are correlated within a model. (b) 
The meaning of the correlation between velocities. (c) The 
relationships that exist between the correlation of the pixels and 
the uncertainties of the velocities associated with those pixels. The 
R and covariance matrix contains data that is not usually analyzed 
in the description of the uncertainties in FWI. Maybe, a reason to 
keep it out of the discussion is related to its size. Since for a set of 
NP random variables,  R is a NP2 sized matrix, the size of such data 
set becomes a challenge. For example, for the simple Marmousi 
model used in this work implies the requirement of 153Gb of 
memory in double precision, which is quite large for such a small 
model. Hence, a reliable estimate of uncertainties analysis for FWI 
turns to be expensive. In comparison, the methods that use the 
resolution matrix, opt for the Hessian, which dimension is NP, and 
it requires less computational resources, although it contains less 
information. If we want to know more about the uncertainties in 
FWI, we must necessarily use more computational resources and 
all the information contained in R. 

We compute the R matrix for both, the Diffractor and the Marmousi 
models. We visualize R as a collection of NP sub-matrices, each one 
of size NP. For example, the correlation matrix Rc7580cj , ∀j = 1,…,NP, 
will symbolize the sub-matrix of correlation of the pixel c7580 with 
the rest NP pixels in the model. Figure 4a shows the matrix Rc7580 . 

The mth sub-matrix, Rci , is a map with ordered elements (Rci,ci 
,…,Rci ,cNP). The element Rci , ck +nz*l symbolizes the correlation of 
the pixel ci with the pixel ck+nz*l ; where every value was computed 
using equation (7). Using this nomenclature, the kl-th element 
of the matrix Rci , will be given by Rci , ck +nz*l. Figure 4a shows the 
correlation map of submatrix Rc7580. The continuous blue band at 
the top of the map corresponds to the first 40m that were not 
inverted. The red point inside the circles shows that the pixel is 
completely self-correlated. In general, visualizing and extracting 
information from matrix R is not trivial because of its large size. 
On the other hand, one might be interested in to see how strong 
is the correlation between a pixel and its close neighborhood. It 
is not actually expected to see any correlation between pixels 
that are too far away from each other. Therefore, to look for 
correlations between pixels, and in order to simplify the analysis 
of the information in the full matrix R, we are proposing a method 
intended to accomplish these goals. 

We propose to associate only one real number Di , to each Ri matrix. 
Di will be named “The Density of Correlation” of the pixel ci . Let 
(p∆z,q∆x) be the physical position of the pixel ci , see Figure 4a. 

(7)

nm initial models built by using this procedure as “the perturbed 
models”. A perturbed model, with k =56,  for Diffractor, is shown in 
Figure 2b, and for Marmousi in Figure 3b. 

The fiducial inverted model MF best, with pixels μ ̅i , accomplished 
by applying FWI to M0 best, is shown in Figure 2c, for the Diffractor 
model, and in Figure 3c, for Marmousi. The symbol MF

k is used 
for the kth model of the cube, that contains nm inverted models 
obtained by applying FWI to the kth perturbed model in M0

k, as 
shown in Figures 2d and 3d, for Diffractor and Marmousi models, 
respectively. The set of final outputs,                , is used for quantifying 
the uncertainty of the velocity profiles. 

The statistical experiment was carried out in the same way for 
the two models: Diffractor and Marmousi. The cube of nm initial 
models          , was inverted through FWI, by using synthetic 
data obtained from propagations in the Mreal, and by using the 
frequencies, (ω1 ,ω2 ,ω3 ,ω4 ), in the multiscale procedure for all 
models.

Figure 2e shows the distribution of velocities of the initial model 
cube for the pixel (70,20). It was confirmed that the distribution of 
every pixel, for both models, satisfied a quasi-normal distribution. 
Based on the quasi-normal distribution of the velocities and, based 
on the central limit theorem (which requires nm ~ 30), we are 
confident that nm=100 starting models represents a great sample 
for our experiment. 

USUAL ANALYSIS OF THE UNCERTAINTY

The uncertainties of the FWI were analyzed using the nm final 
inverted models, taking the jth multivariate random variable as the 
vector mj = (cj

1,…,cj
nm). Thus, the final cube, MF , of inverted models 

can be considered a tensor MF=(m1,…,mNP ). 

The traditional quantification of uncertainties is made through the 
estimation of a map, σ(z,x), of the standard deviations with a priori 
mean for each pixel μ i̅ (zi ,xi ) as the square root of the variance

DENSITY OF CORRELATION MAPS 

The σ(z,x) map is a method used to quantify uncertainties. However, 
it uses data only from the diagonal elements of the covariance matrix. 
Off diagonal terms of the covariance matrix may differ from zero, 
and if that is the case, important information can be extracted on  
the correlation induced between different elements of the velocity 
model. In this work, we estimated the covariance matrix as

Where each entry is an estimate of the relation of the velocity values 
of the two pixels ci and cj. It should be noted that this is a general 
estimation. No assumption about the nature of the underlying 
distribution of the uncertainty is made, and it is not a diagonal matrix. 
Indeed, it is possible that, without focusing on possible pathological 

(4)

(5)

(6)

cases, if an entry cov[ci , cj] has a large absolute value, then the 
uncertainty is increased, as the distances (ci

k -⟨ci ⟩) and (cj
k -⟨cj ⟩) 

are large. Similarly, if it has a small absolute value, the uncertainty 
is expected to decrease.
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Di  is computed by averaging all values of the correlation inside a 
ring of width ∆=rn+1-rn, for n = 0,1,… ; and center at (p∆z,q∆x). Such 
an average is divided by the area of the ring. In this manner, each 
ring is labeled through an integer n: n = 0 accounts for a circle 
containing the first neighbors only, n = 1 label the first ring, and 
so on.

For example, the density of correlation of each pixel with its first 
neighbors, where the ring becomes a simple circle with r0=0 and 
r1=min (∆z,∆x), is estimated without including the self-correlation 
value, as

such that |(p∆z,q∆x)-(k∆z,l∆x)| ≤ r1, where N is the total number of 
correlation values inside the circle of radius r1.

It is expected, from the physical point of view, that the largest 
correlation of the pixel ci , will be associated to its first neighbors, 
as the arriving wave to the pixel comes directly from such first 
neighbors. This physical fact was computationally explored, by 
analyzing the behavior of Di as a function of n, which is shown 

in Figure 4b. Let An= π (rn
2 -r 2

n-1 ) be the area of the n-th ring, 
then the quantity |An  Di (n)| accounts for the absolute value 
of the average of the correlation values in the n-th ring. Figure 
4b presents |An Di (n)| for the first 20 radial bins for ci = c37525 in 
the Marmousi model. It should be noted that the intensity of the 
correlation averaged for each ring decreases rapidly for the first 5 
rings, regardless on the normalization effect of by the geometric 
factor An in equation (8). The same behavior was evidenced by all 
pixels in both velocity profiles. Thus, we confirmed that correlation 
is a local effect and the density of correlation Di can be calculated 
for the first neighbors without compromising much data. Thus, 
by using Di we have reduced the data of  sub-matrix Ri into a 
number Di representing the density of correlation of pixel ci with 
its neighbors. Thus, the full data of the R matrix is reduced from 
a matrix of size NP2 to a single matrix of size NP. The association 
of a number Diwith each Ri matrix, results in the concept of 
Density of Correlations Map Dn (z,x), for a ring with a maximum 
radius r_n, defined by the collection Dn (z,x)={D1 ,…,DNP}, and with 
units m-2. Similarly, by using an identical analysis, we can define 
the Density of Covariance Maps Covn (z,x), for which the equation 
(6) is used. The analysis presented in this work were built for the 
first neighbors, n = 0, and then we will simplify the notation as D0 
(z,x)=D (z,x) and Cov0 (z,x) = Cov(z,x).

Figure 4.  (a) Rings used to compute Di , by averaging all values of the correlation inside a ring of width ∆ , with center in the 
physical position of the pixel ci , such average divided by the area of the ring. (b) | An  Di (n) |  as a function of distance, for the first 
20 rings. The intensity of | An  Di (n) |  decreases rapidly. The same behavior was verified for all pixels in both velocity profiles.

(8)

4. RESULTS AND ANALYSIS
MEAN VALUES MAP 〈MF (z, x)〉: DIFFRACTOR MODEL

The Diffractor model has the parameters nz = 101, nx = 201, 
∆z=∆x=10m, and NP=20301. The dimensions are 1km in depth, 
and 2km in x. In order to do every FWI, ns = 11 sources were 
disposed at zs = 40m, and xsi = (1000 ± i*200)m, where i=0,1,2,…,5. 
A receiver is located at each grid point along the x axis, then nr = 
200; and zr =0m. The frequencies (ω1,ω2 ,ω3 ,ω4 )=(10,20,30,50)Hz 
were used in the multiscale, with 5 iterations for each frequency. 
This model consists on a first layer, z ∈[0,750]m, with a wave 
velocity of 2000m/s and a second layer, z ∈ (750,1000]m, with 
a velocity of 2500m/s. The first layer contains a circular object, 

labeled as Diffractor, with a radius of 150m, and centered at (zc ,xc 
)=(400,1000)m. The mean values map 〈MF (z, x)〉, which was built 
using equation (4), is shown in Figure 5a. Figure 5b shows several 
vertical cuts at x = 1000m, a cut for 〈MF (z, x)〉, a cut for the initial 
profile M0 best , a cut for the real profile Mreal, and a cut for the fiducial 
inverted profile MF best. Although this figure is presented only for 
x=1000m, the features discussed hold for every x, as we verified 
cuts for x=10m,20m,…,1990m. 

Note that the mean velocity (violet line) is closer to the real (blue 
line) than the inverted fiducial model (black line). Just inside the 
circular object and its surroundings, the difference between MF 

best and Mreal has the highest value. As a general observation, such 
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difference increases in the neighborhood of each interface, i.e., the 
interfaces are sources of uncertainty. 

When the waves reach the zone z > 750m, they have crossed three 
boundaries: z = 250m, z ~ 550m, and z ~ 750m; and we note that 
the discrepancy between the different FWI shown in Figure 5b does 
not grow uniformly while depth increases. Thus, such discrepancy 
is low for 0m < z < 250m, later the discrepancy increases inside 
the circular diffractor, and in the subsequent meters 250m < z < 
750m; and for z > 750m, the discrepancy decreases. However, such 
decrease does not mean a decrease of the uncertainty with depth, 
as Figure 5b does not show a standard deviation map. Figure 5b 
is merely a comparison of a FWI cut. In deeper positions, there is 
less illumination, and the physical consequences are shown as an 
increase of the uncertainty, see Figure 6b.

Figure 5. (a) The mean values map. (b) Comparison between 
the mean values map 〈MF (z, x)〉〉, the initial profile M0 best, the 
exact profile Mreal, and the best inverted profile MF best, 
for x=1000m.

Figure 6. (a) The standard deviation map, with previous mean 
μ  ̅ ,  σμ̅(z, x) of inverted models {MF

i} , resulting from FWI 
process. (b) Several cuts of the σμ̅  , showing the increasing of 
the standard deviation with depth. 

UNCERTAINTIES ON VELOCITIES: DIFFRACTOR MODEL

Figure 6a, measured in pixels, shows how the standard deviation 
increases with depth, having a jump just around z ~ 0.75km~80 
pixels. The zone z ~ 0.75km, σμ ̅  (z,x) shows the greatest contrast. 
This fact is a natural consequence of the little illumination reaching 
the bottom of the velocity profile. Just in the interface of the two 
layers, the uncertainty increases. This fact is in agreement with 
Figure 5b, where we argued that the discontinuities are a source 
of uncertainty. 

Figure 6b shows vertical cuts in the standard deviation map 
at different positions along the model. As it can be observed 
in the curves, there is a different behavior of the variation 
of uncertainty away from the circular diffractor than when 
it is close. Violet and black curves show that the standard 
deviations, σμ̅(z<0.75km,x=0.01km)~150m/s σμ̅(z<0.75km, 
x=1.99km)~150m/s, close to the boundaries of the model, 
are larger than the standard deviations near the center, which 
are shown with blue, red and green curves. This fact is quite 
different inside the circular diffractor.  Figure 6b clearly shows a 
global, systematic and almost linear increase of uncertainty with 
depth. An interesting fact related to FWI is that after a reflector 
(an interface), the variance decreases locally, i.e., the map 
σμ̅(z~0.75km,x)~250m/s, and σμ̅(z>0.75km,x)~160m/s; however 
σμ̅(z<0.75km,x)~120m/s, i.e., such decreasing in merely local: 
σμ̅(z,x) always grows globally.

MEAN VALUES MAP 〈MF (z, x)〉: MARMOUSI MODEL

All data about the Marmousi model used in this paper is available 
in the Madagascar repository [24]. This model lies under water 
approximately to 32m. It has 9.2km along x-axis, and 2.992km 
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Figure 7. The mean values map, accomplished by doing FWI 
to the initial cube M0 . Complex details of the model, as those 

highlighted in white, are present in both, M0 best and 〈MF (z, x)〉.

Figure 8. Comparison between the mean, the exact, the initial, and the inversion without noise, named MF best. 

along z-axis. It contains 158 horizontal layers and its extreme 
velocities are cmin=1500m/s and cmax=5500m/s. The parameters 
used in this experiment were nm = 100, nz = 375, nx = 369, 
∆x=0.025km, ∆z=0.008km. A receiver is located at each point 
along the x-axis, therefore, nr=369; and zr=0m. The number of 
sources is ns=62, with zs=40m, and xsi= i*150m, where i = 0,1,2 
,...,61. The frequencies used in the multiscale were (ω1, ω2, ω3, ω4 
)=(10,20,30)Hz. In the inversion, 30 iterations per frequency were 
required, i.e., six times more than the number of iterations used 
for the Diffractor model. Thus, in order to reach MF best, the total 
time computation increases about 24 times as compared with the 
Diffractor model.

The mean values map 〈MF (z, x)〉, for the Marmousi model is 
presented in Figure 7, as well as the lateral changes in velocity, 
belonging to MF best. Note that the complex zones, as those 
highlighted in white, circles and box, are recovered for the FWI. 

Figures 8a and 8b show vertical cuts at x=6.5km and horizontal 
cuts at z=2km, comparing the mean, the exact, the initial fiducial 
model, and the inverted fiducial model. In both figures the 
discrepancies between the results of the inversion are minor. 
Although the mean shows larger discrepancies as compared with 
the exact model than the MF best , a better quantification of such 
discrepancies may be revised in the standard deviation map, in 
order to check the places where the inversion introduces more 
uncertainty. 

UNCERTAINTIES ON VELOCITIES: MARMOUSI MODEL

Figure 9a shows the standard deviation map. The zones with 
greater uncertainty are those with strong lateral variations in the 
velocity profile, for 2km < z < 2.5km. Figure 9b shows the maximum 
uncertainty around 2.5km/s, for the cut z=2.330km. The exact 
velocity in this zone, with strong lateral changes, is 5.5km/s, and 
Figure 9c implies that the error for this zone is close to 45.45%, 
which is undesirable. However, only two zones show this behavior, 
and the rest of the map shows a standard deviation of ~0.5km/s, 
which is acceptable. 

Figure 9c shows that the functional shape of σμ̅(z, x)has a global 
linear growth of uncertainty. The slope for the cuts is close to 
2.34s-1. Considering the detail of the fluctuations shown in Figure 
9c, it is evident that the uncertainty has strong fluctuations in the 
region 2km < z < 2.5km, where there are strong discontinuities in 
the profile as observed in Figure 9a.

Going back to the same behavior observed in the case of the 
Diffractor, we notice that when there are strong discontinuities 
in the medium, uncertainty grows locally in the region of the 
discontinuity. After seeing this effect on the artificial model of 
the Diffractor, and in this more realistic situation of Marmousi, we 
suggest that this is an issue to be considered. We suggest that 
this increased uncertainty may be caused by the behavior of the 
modeling of waves in such discontinuities, where caustics of waves 
may appear due to the modeling of interfering waves in these 
regions. Note that once discontinuities are overcome, in region z > 
2.5km, the standard deviation collapses, for all vertical cuts, to the 
same regular behavior.

ANALYSIS OF DENSITY OF CORRELATION FOR THE 
DIFFRACTOR MODEL

We now move to the Density of Correlation and Density of 
Covariance maps. To make sure that the experiment is unbiased, 
we show in Figures 10a and 10b the absolute value of the density 
of correlation |D(z,x)| of the initial cubes M0, for the Diffractor 
and Marmousi models. From Figures 10a and 10(b), it can be 
observed that there is neither a preferred direction nor  systematic 
fluctuations in the initial conditions map, which means that the 
random noise, introduced to each pixel in our experiment, leads to 
independent and uncorrelated initial models even when the M0 best 
comes from a smoothing of the Mreal . 
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Figure 9. (a) The standard deviation σμ̅(z, x), of the inverted cube MF, resulting from the FWI to the cube M0. (b) Several cuts for the 
zones with greater uncertainties, which is caused by the strong lateral gradients. Not considering the large peaks at 2km < z < 2.5 
km, the functional shape σμ̅(z, x), is, on average, a line whose slope is around 2.34s-1; as is shown in (c). 

Figure 10. D(x,z) for the initial models. (a) for the Diffractor, and (b) for the Marmousi. The maps show a uniform distribution of 
the Density of Correlation indicating non-biased initial data.
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Figure 11a shows the absolute value of the Density of Correlation 
map, and Figure 11b shows the square root of the Density of 
Covariance map. It may be noticed that, although major structural 
features (as discontinuities) can be observed in both maps, the 
different normalization enhances diverse characteristics in each. 
For example, in the √Cov(z,x) map, Figure 11b, the discontinuities 
of circular diffractor and the change of layer than in Figure 11a are 
clearer, whereas the white rectangle does not contain such change, 

and the circular diffractor is diffuse.  Comparing 11a and 11b, it can 
be observed that in the |D(z,x)| map (see the green squares), it 
is easier to observe the artifacts (noise in the correlation) on the 
borders, due to the boundary conditions. Figure 12a shows vertical 
cuts at different positions at the borders and the center of the 
profile. Violet and green lines show, in agreement with what is seen 
in Figure 11a, that there is a low correlation between pixels at the 
border, |D(z,x)|max~ 0.2m-2. The correlation in this region, x~10m or 
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Figure 11. (a) |D(x,z)| for Diffractor model. A decrease of 
uncertainty in well illuminated zones is evidenced through 
the increase of the values of Density of Correlation, which 
are near to the sources in the D(x,z). The white rectangle 
highlights a limited definition of the interfaces, unlike to a 
better definition shown in (b), where √|Cov(x,z)| is illustrated.

Figure 12.  (a) Vertical cuts of |D(x,z)| at different horizontal positions. (b) Horizontal cuts at different depths. The circles 
show the 9 peaks, corresponding to the sources, showing that the energy sources correlation with the pixels.

(9)

x~1000m,  decreases as a function of distance from the surface 
falling down almost to zero at around 600m. We suggest that the 
behavior of the correlation of pixels close to the borders may be 
related to the effect of boundary conditions, indicating that they 
behave partially as a reflector. In the region of the middle of the 
model (blue line) of Figure 12a, we can see that the density of 
the correlation is bigger, |D(z,x)|max~ 0.5m-2. , and it systematically 
decreases with z. This last behavior matches the findings of the 
analysis of standard deviation maps, where standard deviation 
increases smoothly with depth. 

An important feature of the Density Correlation map, |D(z,x)|, 
is the possibility to observe the positions of the sources through 
the peaks of correlation, which are highlighted with green circles 
in Figure 11a. Thus, there are peaks in the correlation due to the 
presence of the sources. Remember that, for the Diffractor model, 
the 11 sources were disposed at xs={0,200,400,600,800,…,180
0,2000}m. The effects of the boundaries mask the first and the 
last peak, corresponding with xs=0m and xs=2000m. Thus, D(z,x) 
shows that there is a strong correlation between the sources 
and its neighborhood. Assessing how this correlation affects the 
quality of the inversion is out of the scope of this work, but this 
diagnostic can be used to study the impact of the configuration of 
seismic sources on the final result of FWI. If we consider that large 
correlations are associated to small uncertainties (small cross-
deviations from the mean value) it also implies that modeling the 
source is a key ingredient in FWI. The fact that the correlation 
can be other than zero in certain zones suggests the existence of 
physical data correlating the elastic properties of the pixels in the 
subsurface model. Such physical data comes from the seismic 
data, both do and dc. These two data vectors contain relevant 
information on physical relations between different pairs of pixels 
inside the model and, therefore, D(z,x) is large when there is a 
high correlation of those vectors. Obviously, close to the surface 
there is physical data available that correlates pixel values. For 
example, the correlation ϑ of the observed and modeled data has 
been described by [23] as:
 

The cuts shown in Figure 12b agree with equation (9), having peaks 
around the sources, where the observed and synthetic data share 
the greatest amount of available information. Thus, the procedure 
to analyze the correlation matrix through the Correlation Density 
maps reproduce natural facts as the correlation between 
synthetic and observed data. The D(z,x) maps provide information 
on uncertainties around the sources that is not evident in the 
other two maps: The Standard Deviation σ(z,x) or The Density of 
Covariance Cov(z,x).

So far we have stated that the correlation between two different 
points suggests that their uncertainties are related, but such 
relation (the functional shape) is unknown and, therefore, an 
uncertainty analysis of the three maps, σ(z,x), Cov(z,x), and D(z,x), 
may be used. 
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Figure 13b shows the absolute value |D(z,x)| map. Once again, it 
can be noted that for those zones with large uncertainties (large 
Cov(z, x)), the correlation density values are close to zero. The 
growth of the uncertainties coming from different causes with 
depth, is verified again. Zones such as those enclosed by green 
lines reinforce the interpretation of section 3.3: zones of Cov(z, 
x), where the covariance increases entails zones of D(z,x), where 
the uncertainties grow. From a general perspective, the |D(z,x)| 
map reproduces the main features found for its analogous in the 
Diffractor. The uncertainties grow with depth and with proximity 
to the boundaries. Also, Figure 13b, contains 61 peaks with 
correlation values close to 1, and corresponding with the positions 
of the sources (zs, xsi) = (0.004,i*0.15)km, with i=0,1,…,61. As it was 
already highlighted, the correlation density map can determine the 
correlation between the sources and the model.

DENSITY CORRELATION ANALYSIS FOR THE MARMOUSI 
MODEL

The Cov(z, x) and D(z,x) maps were computed for the Marmousi 
model, which show similar results to those discussed for the 
Diffractor. In the Cov(z, x), the decrease of uncertainties derived 
from the effects of boundaries was verified However, due to the 
complexity of this model, the range of values of this map oscillates 
in the range [0,3002 ) m2/s2; such an interval is very large and, 
therefore, the visualization of the information is somewhat unclear. 
To better visualize this map, we include its square root, √Cov(z,x), 
in Figure 13a. Using this scaling, the contrasts are larger and it is 
possible to observe that, besides the boundaries, in the zones with 
high lateral gradients of velocity, the covariance (the uncertainties) 
increases. Figure 13a reveals that there are several physical or 
geometric features, other than illumination, which increase the 
uncertainties. Figure 13a shows zones enclosed in white squares 
and rectangles, and also zones pointed at with white arrows. The 
two smaller arrows point towards zones with Cov(z, x)~ 200m/s, 
with depths z ~ 1.5km, while the smallest rectangle, with Cov(z, 
x) < 100m/s, is deeper z ~ 1.9km. The same phenomenon exists  
for the larger white arrow, which points to the highest wedge (z ~ 
2.5km) associated to √Cov(z,x)  ~250m/s, while the white squares 
point to zones (z ~2.7km) associated to √Cov(z,x)~130m/s. Beyond 
the illumination, the physical (geometrical) properties of the model 
and the properties of the ingredients of the FWI engine produce 
quantifiable changes in the uncertainties. Such ingredients were 
described in section 2. The √Cov(z,x)   map and its properties are 
very similar to the mean value map 〈MF (z, x)〉, see Figure 7. This 
fact comes stems from the contrast of velocity magnitudes, which 
are reflected in the √Cov(z,x) map. 

The mathematical standard deviation concept is close to that of 
the covariance map square root; therefore, the √(Cov(z,x))   map 
is practically identical to the σμ(z,x) map, see Figure 9a. Such 
similarities enable relying on the algorithm and the method 
used to compute Cov(z, x) and D(z,x). An important fact to note, 
which is valid for all the cases studied herein, is that the Density 
of Covariance (coming from all elements of the matrix cov[ci,,cj]) 
differ from zero almost everywhere. This means that not all 
information of uncertainty in FWI is in the σμ(z,x) map (which 
comes from diagonal of cov[ci,,cj]), since σμ contains numerous 
values close to zero, see Figure 9a. 

Figure 13.  (a) Cov(z,x) map of Marmousi model. There are several physical or geometric features, other than illumination, which 
increase uncertainties. (b) The |D(z,x)| map containing 61 peaks, with correlation values close to 1, and corresponding with the 

positions of the sources.

CONCLUSIONS
 Several realizations of FWI were used in this work to 
estimate the uncertainties in FWI, without having to rely on the 
classical quadratic approximation. We propose a new method to 
study the uncertainties in FWI through the estimation of the Density 
of Correlation/Covariance Map. To build the method, we propose 
measuring the density of the values of correlation/covariance, in 
the full R matrix, relative to the first neighbors of each pixel. 

 The possibility to determine the Density of Correlation/
Covariance only from the first neighbors enables calculation without 
major computational resources, inasmuch as the D(x,z) map allows 
to reduce the correlation matrix of size NP2 to one map of the size 
NP. From this map, we can obtain information on the correlation of 
a pixel of the medium with its first neighbors. A reduction of size 
in the matrices leads to the potential application of the analysis 
presented herein on real data. To lay the foundations of the method, 
we present all developments on unreal data set as a first approach. 
We consider that the initial implementation of our method must rely 
on a well-known synthetic set of data to evaluate its main features 
and benefits. 

 By using the D(x,z) map, the Cov(z,x), and the typical 
σ(z,x) map, it is possible to propose a framework for the study and 
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estimation of uncertainties in FWI. Concerning uncertainties in the 
FWI, our analysis shows some interesting results:

• We found that D(x,z) can be used to study the effect of 
implementation of boundary conditions. Since our procedure 
allows to recover the positions of the sources, it is worth 
studying the configuration of the sources. 

• We have also found that velocity contrasts in the medium are 
some of the main sources of uncertainty. By using the concept 
of D(x,z), the natural systematic increase of uncertainty with 
depth can be shown and quantified. Such quantification shows 
an almost linear increase of the uncertainty with depth and 
with the presence of the reflectors, especially with the lateral 
variations of the velocity profile. 
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 We propose an uncertainty analysis that can be used, as 
a priori information, to impose limits to the parameter space in a 
seismic inversion procedure, as proposed by Tarantola. Apart from 
the natural applications that the density of correlation or covariance 
may have on the interpretation of FWI results, one can think on 
the implications of the estimation of the Density of Correlation 
or Covariance during the execution of the FWI. Computing these 
quantities on-the-fly during the execution of FWI may help to 
constrain the behaviour of the inversion using the estimated 
uncertainties as a proxy to explore the parameter space. This is an 
idea that is worth to be explored. 
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