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ABSTRACT 
An alarm management methodology can be proposed as a 
discrete event sequence recognition problem where time patterns 
are used to identify the process safe condition, especially in the 
start-up and shutdown stages. Industrial plants, particularly in the 
petrochemical, energy, and chemical sectors, require a combined 
approach of all the events that can result in a catastrophic 
accident.  This document introduces a new layer of protection 
(super-alarm) for industrial processes based on a diagnostic 
stage.  Alarms and actions of the standard operating procedure 
are considered discrete events involved in sequences, where 
the diagnostic stage corresponds to the recognition of a special 
situation when these sequences occur. This is meant to provide 
operators with pertinent information regarding the normal or 
abnormal situations induced by the flow of alarms. Chronicles 
Based Alarm Management (CBAM) is the methodology used to 
build the chronicles that will permit to generate the super-alarms 
furthermore, a case study of the petrochemical sector using 
CBAM is presented to build the chronicles of the normal start-
up, abnormal start-up, and normal shutdown scenarios. Finally, 
the scenario validation is performed for an abnormal start-up, 
showing how a super-alarm is generated.
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UNA NUEVA CAPA 
DE PROTECCIÓN A 
TRAVÉS DE SÚPER 
ALARMAS CON 
CAPACIDAD DE 
DIAGNÓSTICO

RESUMEN
Se puede formular una metodología de gestión de alarmas como 
un problema de reconocimiento de secuencia de eventos discretos 
en el que se utilizan patrones de tiempo para identificar la condición 
segura del proceso, especialmente en las etapas de arranque 
y parada de planta. Las plantas industriales, particularmente 
en las industrias petroquímica, energética y química, requieren 
una administración combinada de todos los eventos que pueden 
producir un accidente catastrófico. En este documento, se introduce 
una nueva capa de protección (súper alarma) a los procesos 
industriales basados en una etapa de diagnóstico. Las alarmas y las 
acciones estándar del procedimiento operativo son asumidas como 
eventos discretos involucrados en las secuencias, luego la etapa de 
diagnóstico corresponde al reconocimiento de la situación cuando 
ocurren estas secuencias. Esto proporciona a los operadores 
información pertinente sobre las situaciones normales o anormales 
inducidas por el flujo de alarmas. La gestión de alarmas basadas en 
crónicas (CBAM) es la metodología utilizada en este artículo para 
construir las crónicas que permitirán generar las super alarmas, 
además, se presenta un caso de estudio del sector petroquímico 
que usa CBAM para construir las crónicas de los escenarios de 
un arranque normal, un arranque anormal y un apagado normal. 
Finalmente, la validación del escenario se realiza para un arranque 
anormal, mostrando cómo se genera una súper alarma.
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An automatic reconfiguration on embedded control system is 
a common requirement on highly automated systems and the 
fault diagnosis applications are difficult to implement [2]-[3]; 
consequently, the ultimate goal for a supervisory and control system 
is to optimize the availability, reliability, and safety of production 
processes [4]. As regards safety, an integrated management of the 
critical factors in the process ensures an optimum reliability level at 
the plant [5]-[6]. Today, the expanding complexity of control systems 
is caused by the increasing automation of industrial production 
processes. The use of digital data-based technologies in these 
systems suggests an increase in the amount of data that must be 
monitored and processed, including better communication ability 
among process agents [1]. Factors such as the control of process 
variables, procedures, and steps followed in transitional stages 
seek to keep the plants within the operating established "limits" 
[7] With regard to start up or shutdown procedures, the number 
of signals increases, the plant safety must have a comprehensive 
management of factors to analyze accident causes.  In other words, 
these factors must be managed in a comprehensive, rather than 
separate manner,  because if any of them is left outside, unattended 
or  they decrease, this will be a safety threat [8]-[9]. When an 
industrial process changes its status, for example, start-up or 
shutdown, the alarm flood spreads, cuasing severe situations that 
prevent the operator’s correct reaction. Furthermore, it is commonly 
reported that 70% of plant conflicts occur at the start-up/shutdown 
stages [34]. Due to this alarm flood, dynamic alarm management 
is necessary. Nowadays, many fault detection and diagnosis 
methods for multimode processes have been proposed; however, 
these techniques cannot register the main faults in the basic alarm 
system [35].  Consequently, the operators need a tool to help them 
recognize the situation at the plant, especially in transitional stages 
such as start-up and shutdown.  Safety conditions and monitoring, 
control, and management of complex systems require interest and 
efforts seeking prompt fault detection and isolation techniques. 
Many popular approaches are available for identifying faults; for 
instance, signal-based methods are widely used, seeking to extract 

SAFEGUARDS AND ALARM MANAGEMENT

Some years ago (the '60s, the '70s), the combination of a new 
alarm on the systems had a high cost and required careful studies 
and analyses before using it. Currently, alarm management is an 
important aspect of industry processes safety. Each alarm had 
to be wired given the limited space on the control room panels. 
New hardware and software improvements have enabled the 
implementation of alarms at a minimum cost, without space 
limitation and requiring less inspection. Therefore, quite often 
unnecessary alarms are triggered, Hence,  there has been significant 
progress related to alarm systems, as alarms are installed and 
configured considering the number of existing signals (analog 
and discrete) and the rate of alarms with which an operator can 
respond efficiently. Alarm systems can induce numerous alarms 
that cannot be evaluated by the operator, which is a serious threat 
to process safety [9]. Therefore, the question is:  What alarms can 

useful information from the analysis of specific signals by means of 
thorough,  rigorous analyses of the main statistical methods used 
to detect changes [10]-[11]. The model-based methods, such as 
parity or space-based a observers [12], used a mathematical plant 
model to explore the implicit analytic redundancy relations model 
to monitor inconsistencies between the model and data measured. 
However, these methods suggest a large demand of computational 
load. Other popular methods as those based on fault trees [13] or 
causal graphs and propagation [14] were based on a qualitative 
model of the plant. Other approaches have been developed by 
expert systems based on artificial intelligence techniques [15]. 
Additionally, hierarchical clustering methods were used to carry out 
pattern matching correlations [16] in which some frequent patterns 
of multiple alarm correlation may have the ability to reflect the 
normal operation sequence, and any pattern change may be a sign 
of abnormal alteration, sensor degradation or malfunction. Finally, 
the work [17] included several examples of a model and signal-based 
fault detection Electrical Flight Control System (EFCS) in aircraft. 

This suggests the need not only of a diagnosis system to maintain 
the process safe by increasing the availability of the installation, but 
also new alarm management methodologies [18].  Industrial plant 
safety involves a comprehensive management of all factors that may 
cause accidents. Hence, alarm management is of great relevance in 
safety planning for different plants. Any additional support relative 
to protection of industrial processes will be welcomed by the process 
safety community.

This article is divided into 7 sections. Section 1 is the introduction; 
section 2 is a brief description of safeguards, alarm management, 
and the formal framework of the chronicles; section 3 presents 
the traditional layers of protection in an industrial process and the 
super-alarm, as a new layer of protection.  Section 4 describes the 
CBAM methodology; Section 5 and 6 presents the results of a case 
study and the results analysis. Finally, section 7 corresponds to 
conclusions and future work.

INTRODUCTION1

2. THEORETICAL FRAME 
be ignored without compromising the integrity of the process?  
This can lead to sub-alarm systems, which is as bad as having a 
an over- alarmed system [21]-[22]. Alarm management systems 
must deal with two main setbacks: A very high rate of alarms, and 
lack of criteria for assigning the priority of an alarm. The alarm rate 
indicates the load  produced by the alarm system to the operator. 
If the operator is supposed to respond to all alarms, the system 
must not produce more alarms than the operator can respond 
to effectively. The most important factors that affect the rate of 
alarms are: the number of alarms settled, the dead band analog 
alarms (pressure, temperature, flow, level, etc.), the analog alarm 
limits, and the alarms packages equipment (compressors, furnaces, 
etc) [23].  The alarm priority determines the order in which the 
operator must respond to the alarm, i.e. it determines the relative 
importance of the alarms. Often it can be found that all alarms have 
the same priority, or sometimes a large percentage is assigned to 
one priority and only a little to other priorities. It is important to have 
alarms prioritized correctly because, in a setting where the operator 
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receives a sequence of alarms in a short period, the priority is the 
only factor that the operator has to determine the alarm to which 
he must respond as priority [24]. Alarm management is a process 
whereby alarms are designed, monitored and managed to ensure 
more reliable and safe operations. The first mistake is to assume 
that alarm management has to do with reducing the number of 
alarms. The aim of an alarm management system is to improve the 
quality process acting on the rate of alarms during normal operation, 
abnormal situations, on the priority of alarms, and on problems 
related to maintenance and Operation/Control. 

The motivation of alarm management is based on improving the work 
environment  for the operator (ergonomics) preventing overload, 
and unexpected stops, making operations safer and thus achieving 
improved plant reliability [18]. To define the performance of an 
alarm system, a set of performance indicators (KPIs) is necessary. 
The KPI (Key Performance Indicator) should be calculated over a 
reasonable period of time, e.g. a week. The Engineering Equipment 
and Materials Users Association EEMUA, through its publication 
191, suggests some indicators that can be used when evaluating 
an alarm system. On the other hand, many operator failures have 
been registered as incidents that have been the main cause of major 
accidents. For controlling and mitigating these events, it is necessary 
to have clear, concise and accurate operating procedures in place. 
Operating procedures must provide instructions for proper operation 
of the process plant on aspects such as the Control of Substances 
Hazardous to Health (COSHH), manual handling, Personal 
Protective Equipment (PPE) regulations, quality, the Hazard and 
Operability study (Hazop), and the Safety Health and Environment 
(SHE) requirements. A Standard Operating Procedure (SOP) is a 
set of step-by-step instructions structured to help the operators 
carry out routine operations, and each company or organization 
defines their SOP as they deem more convenient.  The principal 
objective of the SOPs is to achieve efficiency, quality output and 
uniformity of performance, reducing delays and failures. Therefore, 
the standard operating procedures should depict a definition of 
the best practice that can work at any moment. In addition, alarm 
management corresponds to determining, documenting, designing, 
operating, monitoring, and maintaining alarm systems and recently 
many researchers have focused on themes such as Alarm history 
visualization and analysis, process data-based alarm system analysis 
and rationalization, plant connectivity and process variable causality 
analysis (causal methods) [25]. In sum, the fundamental purpose of 
an alarm is to alert the operator of deviations of process variables 
from normal operating conditions, i.e. abnormal operating situations. 
ISA-18.2 defines an alarm as "An audible and/or visible means 
of indicating to the operator an equipment malfunction, process 
deviation, or abnormal condition requiring a response". This means 
that an alarm is more than a message or an event; an alarm indicates 
a condition requiring the operator's attention of plant conditions 
requiring timely assessment or action. As already mentioned, the 
alarms and operational actions will be treated as discrete events. In 
each scenario (normal or abnormal behavior), these discrete events 
will occur. Therefore, these sequences of events will be recognized 
by the chronicles, which is the formal framework used in the alarm 
management methodology. 

Alarm management implies determining, documenting, designing, 
operating, monitoring, and maintaining alarm systems and recently 
the attention of many researchers has been focused on themes such 
as Alarm history visualization and analysis, Process data-based 
alarm system analysis and rationalization, and plant connectivity 
and process variable causality analysis (causal methods).

ALARM HISTORY VISUALIZATION AND ANALYSIS

A combined analysis of plant connectivity and alarm logs to reduce 
the number of alerts in an automation system is presented in [42]; 
the aim of this work is to reduce the number of alerts presented 
to the operator. If alarms are related to one another, those alarms 
should be grouped and presented as one alarm issue. This process 
analysis starts with the alarm history, which is a log containing all 
past alarm messages; therefore, this is combined with the plant 
topology of the controlled system and a set of rules. Graphical 
tools for routine assessment of industrial alarm systems are 
proposed by [43]; they present two new alarm data visualization 
tools for performance evaluation of the alarm systems, known as 
the high-density alarm plot (HDAP) and the alarm similarity color 
map (ASCM). 

An alarm message displayed in the operator console has a variety 
of properties such as tag name, alarm setpoint, tag description, 
alarm identifier, plant name, timestamp, area, priority, trip value 
and so on. Most of the information in the alarm message is used 
by the operator to identify the root cause of the abnormal event. 
"Timestamp" is the time of occurrence of the alarm. "Tag name" is 
usually the variable name of the instrument measuring any physical 
property such as temperature and pressure. Depending on the 
response time available to the operator, each alarm is assigned a 
priority (Low, High, and Emergency are  commonly used priorities). 
"Trip value" is the value of the process variable at the time of alarm 
occurrence and it may be different from the alarm setpoint. Event 
correlation analysis, and a two-layer cause-effect model, are used 
to reduce the number of alarms in [44]. 

The event correlation analysis is a knowledge extraction method that 
detects statistical similarities among discrete events of alarms and 
operations. The method uses event data from the plant to quantify 
the similarity with its time lag between two events by evaluating 
the cross-correlation function. By grouping correlated alarms and 
operations in accordance with the degree of similarity, nuisance 
alarms and operations can be found more easily than by analyzing 
individual alarms in the top 10 worst alarm methods. A Bayesian 
method has been introduced for multimode process monitoring in 
[45]. Conventional methods assume that either the process data 
are Gaussian in each operation mode, or some process knowledge 
can be incorporated, thus making the methods supervised. 

A new unsupervised method is developed for multimode process 
monitoring in this work, which is based on Bayesian inference 
and two-step independent component analysis, plus a principal 

Technique/Aspect DES Time SOP Simultaneous Repetition

NO NO

YES YES

YES YES YES

NO NO

NO NO NO

NO NO NO

NO NO NO

NO NO

Plant connectivity 
and alarm logs [42]

Event correlation 
analysis [44]

Graphical tools [43]

Bayesian methods [45]

Source: see references [42], [43],  [44] and [45]

Table 1. Techniques of alarm history 
visualization
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component analysis (ICA–PCA) feature extraction strategy. ICA–
PCA is introduced for feature extraction and dimension reduction. 
In addition, by transferring the traditional monitoring statistic to 
fault probability in each operation mode, monitoring results in 
different operation modes can be easily combined by the Bayesian 
inference.  Table 1 in these alarm management techniques includes 
the following aspects: DES (discrete event system), the time 
between event occurrences, SOP (standard operating procedures), 
simultaneous occurrences of events and repetition of events in a 
temporal sequence. This type of technique can help recognize alarm 
chattering, grouping many alarms or estimating  alarm limits in 
transition stages, but the occurrence date of the alarms related to 
the procedure actions is not included.

PROCESS DATA-BASED ALARM SYSTEM ANALYSIS AND 
RATIONALIZATION

The evaluation of plant alarm systems by behavior simulation using 
a virtual subject was proposed by [46]. An operator model, which 
mimics the FDI (fault detection and identification) behavior of a 
human operator with primary cognitive and executive capabilities 
is developed as a virtual subject for supervising a chemical plant 
system. Another proposal [47] introduced a technique for the 
optimal design of alarm limits that analyzes the correlation between 
process variables and alarm variables. The interrelationship between 
variables causes the problem of multivariable alarm analysis 
and rationalization is complex and important for smart alarm 
management. Visualizing and capturing correlation data, especially 
from historical alarm data directly, is useful for further analysis. In 
this work, they suggest that the Gaussian kernel method is applied 
to generate a pseudo-continuous time series from the original 
binary alarm data. This can reduce the influence of missing, false 
and chattering alarms. In 2009, a framework based on the receiver 
operating characteristic (ROC) curve was proposed for optimal 
design alarm limits, filters, dead bands, and delay timers; this work 
was presented in [48]. In industry processes, most of the alarms 
are false or nuisance alarms and only distract the operator from the 
normal operation of the process. Filtering process data, adding alarm 
delay, and using alarm dead band are simple techniques that if used 
properly can reduce the false and nuisance alarm rate significantly. 
This paper investigated the effect of these three techniques on the 
accuracy of the alarm system and detection delay. They also propose 
a framework for designing optimal filters, time delay, and dead band 
to reduce false and missed alarm rates. 

A dynamic risk analysis methodology that uses alarm databases 
to improve process safety and product quality was presented in 
[49]. Important data about unsafe conditions resides in the large 
alarm databases of distributed control systems and emergency 
shutdown systems. These overlooked and underutilized data can 
be analyzed to identify process near-misses and to determine the 
probability of serious accidents. Many companies record these alarm 
occurrences in the distributed control systems (DCS) and emergency 
shutdown (ESD) databases. Operators, engineers, and managers 
seek guidance from these databases by recording key indicators 
and paying special attention when alarm flooding occurs. Most of 
the time, further analysis is done after process upsets, unexpected 
trips, and accidents. In another approach [50], the Gaussian mixture 
model was employed to extract a series of operating modes from 
the historical process data to then derive the local statistics and its 
normalized contribution chart for early detection of abnormalities 
and isolating faulty variables. Fault isolation based on data-driven 
approaches, in general, presumes that the abnormal event data 

will be formed in a new operating region, measuring the differences 
between normal and faulty states to perceive faulty variables. When 
operators are involved in processes, they are aware of abnormalities 
occurring and, if the process behavior is non-stationary, the operators 
try to bring it back to normal state. Therefore, the faulty variables 
must be located in the first place when the process deviates from 
its normal operating regions. Table 2 includes in these alarm 
management techniques the following aspects: DES (discrete 
event system), the time between event occurrences, SOP (standard 
operating procedures), simultaneous occurrences of events and 
repetition of events in a time sequence. The use of virtual subjects 
could be applied to probe the alarm system added to historical data 
on alarm behavior for detecting abnormalities. The problem arises 
when the simulation requires a long time to probe all the possible 
scenarios and when analyzing new plants lacking historical data.

PLANT CONNECTIVITY AND PROCESS VARIABLE CAUSALITY 
ANALYSIS

In the literature, transition monitoring of chemical processes has 
been reported by a good number of researchers. In [51] ,a dynamic 
alarm management strategy for chemical process transitions 
was presented, in which the artificial immune system-based fault 
diagnosis (AISFD) method and a Bayesian estimation based dynamic 
alarm management (BEDAM) method were integrated. However, 
the traditional alarm management systems configured for a single 
steady-state cannot handle the problem of alarm flooding during 
transitions. Therefore, it is necessary to propose a new alarm 
management strategy for transitions. In this work, the proposed 
dynamic alarm management strategy uses dynamic alarm limits 
instead of static upper bound and lower bound values. In the proposal 
of [52] a fault diagnosis strategy for the startup process based on 
Standard Operating Procedures (SOP) was presented; this approach 
proposes a behavior observer combined with dynamic PCA (Principal 
Component Analysis) to estimate process faults and operator errors 
at the same time. 

The startup/shutdown is a common transition in the chemical 
process industry. Therefore, a startup/shutdown is normally 
executed by plant operators who follow predefined standard 
operating procedures, so that the plant settles down to a different 
steady state. Operator errors, in addition to process faults, occur 
frequently during this stage. There is another work [53], which 
is related to direct causality detection via the transfer entropy 

Technique/Aspect DES Time SOP Simultaneous Repetition

YES YES YES

NO

NO

YES NO

NO

NO

NO NO NO

NO NO

NO NO NO

NO NO

NO

NO

NO NO

Virtual subjects [46]

Receiver operating
characteristic [48]

Gaussian mixture 
model [50]

Correlation 
information [47]

Dynamic risk 
analysis [49]

Source: see references [46], [47], [48], [49] and [50]

YES YES

Table 2. Techniques of process data-
based alarm systems
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approach. An important and challenging problem in root cause 
and hazard propagation analysis is the detection of direct causality, 
as opposed to indirect causality. Numerous methods propose 
alternative solutions to this problem, especially when linear 
relationships between variables are involved. 

Currently, only overall causality analysis can be conducted for 
nonlinear relationships; however, direct causality cannot be identified 
for such processes. In this work, the authors describe a direct 
causality detection approach suitable for both linear and nonlinear 
connections. In [54], the focus was the work progress in root cause 
and fault propagation analysis of large-scale industrial processes, 
in which several causal graphs, rule-based models, and ontological 
models are summarized. Given the interconnection of material and 
information flows in large-scale industrial processes, a fault can 
easily propagate between process units. Therefore, the problem of 
fault detection and isolation for these processes is concentrated on 
the root cause and fault propagation before applying quantitative 
methods in local models. 

Reference [55] presented a framework for managing chemical 
plant transitions, proposing a trend analysis-based approach for 
locating and characterizing the modes and transitions in historical 
data. Chemical processes work in different steady states and 
frequently undergo transitions between them. However, alarm 
management, fault diagnosis, and other automation systems, 
are usually configured, supposing a single state of operation. 
When the plant moves out of that state, these applications signal 
false alarms even when the desired change is occurring. In this 
paper, the authors propose a framework that would enable these 
applications to be state-conscious and reconfigure themselves to 
remain relevant in any process state. Process states are defined 
in modes and transitions corresponding to quasi-steady state and 
transient operations, respectively. Finally, in [56] a hybrid model-
based framework was used for alarm anticipation and the user is 
prepared for the possibility of a single alarm occurrence. The modern 
chemical plants have many integrated and interlinked process 
units. When an abnormal situation occurs, the automation system 
alerts the operators through alarms.  The authors introduce a new 
type of alarm, known as "anticipatory alarms", intended to direct 
the operators in a holistic  way  to the abnormal situation. These 
anticipating alarms were developed based on an alarm anticipation 
algorithm using dynamic process models to obtain an accurate 
short-term prediction of the process state. 

Table 3 includes in these alarm management techniques the 
following aspects: DES (discrete event system), the time between 
event occurrences, SOP (standard operating procedures), 
simultaneous occurrences of events and repetition of events in 
a temporal sequence. For transition monitoring, these types of 
techniques are used in industrial processes and the hybrid model-
based framework is a possible representation of a petrochemical 
system. It can be observed that a causal model leads to the 
identification of the root of the failures and to check the correct 
evolution in a transitional stage.

In conclusion, a review of alarm management techniques was 
presented. Techniques that permit the recognition of alarm 
chattering, grouping many alarms or estimate the alarm limits in 
transition stages. Other techniques use virtual subjects to probe the 
alarm system and historical data on alarm behavior for detecting 
abnormalities. The last techniques presented used the hybrid model-
based framework as a possible representation of a petrochemical 
system and these techniques also rely on standard operating 
procedures. Although none of these types of techniques use DES, 
our proposal is closer to this third type of approaches and our work 
seeks to leverage on the causal relationships between process 
variables and procedure actions, as will be addressed further below. 

The relationship between the field of discrete events and the 
techniques exposed is summarized in that 31,2 % of these alarm 
management techniques use DES, 25 % including the time between 
event occurrences, 12,5 % of these use SOP, 6,25 % include the study 
of simultaneous occurrence of events, and finally 6,25 % analyze 
event repetitions. No techniques for alarm management include 
all these aspects simultaneously in the same approach.  In this 
paper, a dynamic alarm management strategy is proposed to deal 
with alarm floods occurring during any transition of the chemical 
processes (start-up, shutdown, slow march, fast march, etc.); 
consequently, this approach relies on the situation recognition (i.e. 
chronicle recognition). Chronicle Based Alarm Management (CBAM) 
[37]-[39] is the methodology used to generate super-alarms as a 
new protection layer in industrial processes. This methodology has 
been developed as an alarm management technique, using hybrid 
models and inspired on fault diagnosis approaches, see Figure 1. 
As the efficiency of alarm management approaches depends on the 
operator expertise and process knowledge, this information is used 
with the methodology (see Section 4), and our goal is to develop a 
diagnosis approach as a decision tool for operators. 

Technique/Aspect DES Time SOP Simultaneous Repetition

NO

NO

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

Dynamic alarm
management [51]

Direct causality [53]

Framework plant
 transition [55]

NO
Hybrid model base

framework [56]

SOP strategy [52]

Root cause [54]

Source: see references [51], [52], [53], [54], [55] and [56]

Table 3. Techniques of plant 
connectivity and causality analysis

Figure 1. Chronicle Based Alarm Management CBAM
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3. STATE OF THE TECHNIQUE

The operation of many industry processes, especially in the 
chemical, mineral, energy and petrochemical sector, involves 
inherent risks due to the presence of hazardous materials like gases 
and chemicals that in certain conditions can cause an emergency. 
In these types of industrial processes, safety is managed by layers 
of protection, starting with a safe design (Process Design Level) 
and an effective process control (Process Control Level), followed 
by the manual (Operator Interventions Level) and automatic 
(Safety Instrumented System Level) prevention layers, and 
concluded with layers to mitigate the consequences of a critical 
event (Active protection level, Passive protection level, Plant 
emergency response level, and Community emergency response 
level) as shown  in Figure 3. 

Layer 1: Process Design (e.g., inherently safer designs). This layer 
corresponds to the design of the process, for example, the size of 
the tanks, valves, pipes.  Figure 3 presents the tank in cadet blue 
as one element of protection in this layer.

CHRONICLES: A  FORMAL FRAMEWORK

A chronicle is a set of events linked by relationships or temporal 
constraints which occurrence will be subject to a certain context. 
Chronicles can also be expressed as constraint graphs where events 
are represented by nodes, and the time constraints are the labels of 
arcs. For the time, C. Dousson considers a discrete totally ordered set 
Τ which granularity is fine enough as compared to the environment 
observed dynamics and to the precision obtained from the means of 
observation [9],[39]. The notion of event type expresses a change in 
the value of a given domain feature or set of features, and E is the 
set of all types of events. Let us consider time as a linearly ordered 
discrete set of instants. 

Definition 1: An event e is defined as a pair  e = (ei ,ti  ), in which ei ∈ E 
is an event type and ti is a variable of integer type called the event 
date. Several events can have the same type of event, but do not 
necessarily have the same date, for instance e1 = (a,3) and  e2=(a,6) 
are two events carrying the same type of event a.

A flow of activity generated by a system is represented by a temporal 
sequence. In these temporal sequences time is represented by 
a discrete set of time points, totally ordered which granularity is 
sufficiently thin compared to the observed dynamics and precision 
permitted by means of observation, thus considering that there is no 
inaccuracy. Next, it may refer to an event type as an event for short.  A 
temporal sequence (or sequence for short) consists in several events 
in an orderly manner, which leads us to the following definition:

Definition 2: A sequence on E is denoted as an ordered set of events 
S=〈(ei ,ti  )_j 〉 with  j ∈ Nl , in which l is the size of the temporal 
sequence S and Nl is a finite set of linearly ordered instants of 
cardinal l. l = |S| is the size of the temporal sequence, i.e. the 
number of event type occurrences in S. An example of sequence 
representing an activity stream may be given by a sequence S1= 
{e1 ,e2 ,e3 ,e4 ,e5 ,e6  } = {(a,2),(b,4),(c,5),(a,8),(b,9),(a,10)} with l1 = 6. 

Definition 3: A chronicle is defined as a triplet C = 〈ξ,Τ,G〉 [33] such 
that:

• ξ ⊆ E. In which ξ is called the typology of the chronicle, 
• Τ is the set of temporal constraints of the chronicle, 
• G = ( Ψ,A) is a directed graph in which:

 ° Ψ is a set of indexed event types, i.e. a finite indexed family 
defined by ψ: H → E, in which H ⊏ N 

 ° A is a set of edges between indexed event types; there 
is an edge (ei (h1 ) , ej (h2 ) ) ∈ A if and only if there is a time 
constraint between ei(h1 )  and ej(h2 ) .

Definition 4: Chronicle instance. A chronicle C = 〈 ξ, Τ, G 〉 is recognized 
in a temporal sequence S of event types ξ´, such that  ξ  ⊆  ξ´, in which 
all temporal constraints Τ are satisfied. Then Cinst  = 〈ξ , Τv 〉 in which 
Τv is a valuation of Τv.  If the sequence S has finished, and at less, one 
event that occurs violates some temporal constraint, this chronicle 
is not recognized. Figure 2 illustrates the above definition: the 
chronicle on the left is recognized in the first and second sequence. 
Nevertheless, it is not recognized in the third sequence because 
the only set of constraints relating a,b,c, and d in this sequence is: 
Τv = {a[5,5]b; a[3,3]c; c[2,2]b; b[2,2]d}  and Τv is not a valuation of 
T = {a[3,4]b; a[1,2]c; c[1,2]b; b[1,2]d}.  

Definition 5: Temporal restriction. A temporal restriction for a pair 
of event types (ei , ej ) is a given time constraint between their event 
dates TR ij = ei [t -, t + ] ej . 

Figure 2. Chronicle instance

Figure 3. Safety layers of protection
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Layer 2: Basic controls, process alarms, and operator supervision. 
A basic process control system (BPCS) is a system that responds 
to input signals from the process and its associated equipment, 
other programmable systems, and/or from an operator, and 
generates output signals causing the process and its associated 
equipment to operate in the desired manner and within normal 
production limits (Process Safety Glossary). This layer includes 
control elements such as PLC´s, industrial controllers, control 
valves, industrial instrumentation, motors, and regulators. Figure 
3 shows in green the elements that maintain the process variable 
under control (FT, FIC). In this case, the flow control valve regulates 
the tank level.

Layer 3: Critical alarms, operator supervision, and manual 
intervention. In this layer, we see HMI (Human Machine Interface) 
and supervisory systems showing to the operator the alarms 
configured on the system. Whenever an alarm occurs, it requires 
the intervention of the operator, and when flood alarms occur 
many accidents can happen. Alarm management is an important 
aspect to have in mind currently, which is described in this section.  
In Figure 3 the elements related to this layer are shown in yellow. 
The level switch of high LSH activates the level alarm of high 
LAH. The alarms are considered independent variables that are 
not processed after occurring; furthermore, quite often, these are 
ignored by operators as as alarms are of normal occurrence.

Layer 4: Automatic action (e.g. SIS or ESD); A Safety Instrumented 
System (SIS) is a new term used in the standards usually referred 
to as Emergency Shutdown System (ESD), safety stop system, 
interlocks system, emergency firing system or security systems.  
It could also be defined as the ultimate preventive security layer 
if the control system and operator performance are insufficient. 
In this case, that must be a system that automatically takes the 
appropriate action (partial or total stops of equipment and plants) 
in order to avoid the risk. These safety instrumented systems are 
normally separate and independent from the control systems, 
including logic, sensors, and valves at the field. 

Unlike control systems, which are active and dynamic, e.g. LSHH in 
Figure 3, SIS is basically passive and "sleepy"; this means that the 

elements of a SIS do not execute actions until a process variable 
increase without control, so they usually require a high degree 
of safety and fault diagnosis, as well as to prevent inadvertent 
changes, manipulation, and good maintenance [20]. Therefore, to 
involve fault diagnosis methodologies is an important aspect of 
process safety that needs to be developed continuously.

Layer 5: Physical protection (e.g. relief devices); physical protection 
in an industry process include relief devices used to reduce the 
impact from a catastrophic failure of equipment and/or minimize 
the effects of any unanticipated or uncontrolled event. These relief 
devices are used as emergency devices and not for normal process 
control. For individualized equipment, as well as equipment 
assembled as part of a chemical process, abatement elements 
are used. Rupture disks, relief valves, and expansion chambers 
are common elements used as physical protection. Figure 3 
shows the Pressure Relief Valve in orange as a component of this 
protection layer.

Layer 6: Physical protection (e.g. dikes); the area shut-in with 
concrete contours or physical barriers that could contain oil, fuel, 
water or any liquid is defined as a diked area. The flammable liquid 
storage area could be a number of tanks within a common diked 
area. Moreover, the total dike area, rather than the storage tanks 
could be considered the hazard to be protected by a suitable fixed 
foam fire protection system.  A dike is shown in red in Figure 3 as 
a physical barrier. 

Layer 7: Plant emergency response. Through planning, preparation, 
mitigation, response and recovery in the event of emergencies 
and disasters, direct and indirect consequences are expected 
to be increasingly weak. A plant emergency response seeks to 
eliminate/diminish vulnerability to threats, implementing the 
necessary measures to secure survival of those involved directly 
or indirectly and the reduction of costs for damage to furniture, 
and equipment.

Layer 8: Community emergency response. Nowadays the concept 
of emergency management refers to the rational process by 
which society prepares to deal with the consequences associated 

Figure 4. Process safety relationships
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To determine the events and signals of a procedure, it is necessary 
to analyze and consider the initial conditions of the process and to 
identify potential failure modes. Hence, a complex system requires 
a division into subsystems for allowing for a reliable analysis. The 
goal of the technology used maintains the process variables on 
their limits of operation. In terms of process safety, the principal 
characteristics of a good protective barrier are specificity, 
independence, reliability, and audit.  Specificity: Barrier capable of 
detecting and preventing or mitigating consequences of a potentially 
dangerous specific event (e.g. explosion).  Independence: A barrier 
is independent of all other layers associated with the potentially 
dangerous event and when there is no potential for common cause 
failures. Furthermore, the protection layer is independent of the 
triggering event.  Reliability: The protection provided by the barrier 
reduces the risk identified for a specific and known quantity, then 
determined by its probability of failure. Audit: A barrier must be 
designed to allow inspections and periodic and regular testing of 
the protection function [26]-[27].

This article proposes a new protection barrier between the 
"Alarm" and the "Trip" (SIS) layers, see Figure 5. One additional 
protection layer could reduce the accident probability by helping 
the operators take better decisions when alarm floods happen. 
It has been demonstrated that advanced diagnostic systems for 
industrial processes, along with the intervention of the operators, 
may constitute an additional protective safety layer. However, these 
new elements seem to never have been included as a protection 
layer because diagnostic systems for industrial processes are not 
yet extensive as practical tools [28].

The new barrier comes from a diagnosis process and it is specific 
as it is capable of detecting and preventing a specific (particular) 
dangerous situation, e.g. wrong operating action in the start-up 
procedure or failure in a valve. This new barrier is independent 
because its functionality does not depend on other elements; if 
some of the signals involved in the diagnosis tool fail, this new tool 
can detect it. The reliability of this barrier is determined by the 

reduction of a large number of alarms avoided by the operators. 
Finally, this new protection layer can be auditable because 
the diagnosis tools permit checking it from a methodology 
that includes simulations of scenarios, checking the response. 
The notion of "super-alarm" corresponds to a new alert to the 
operators resulting from a diagnosis procedure representing a 
superior alarm. 

Consequently, in automatic control systems, the supervision 
functions indicate undesirable or not permitted process status and 
appropriate actions to maintain performance and avoid damage or 
harm states.  A system can be diagnosed if, regardless of the system 
behavior, it will be able to determine a unique diagnosis, without any 
ambiguity. When a super-alarm is generated, the supervisory and 
control system can trigger automatic control actions in addition 
to operator alerts. The diagnosis capacity of a system is generally 
computed from its model [31], and in applications using model-
based diagnosis, such model is already present, and does not need 
to be built from scratch. The methodology used to generate super-
alarms in this paper is supported by an event-based diagnosis 
process where from a flow of discrete events, normal and abnormal 
situations can be detected. The fault diagnosis in general consists 
in the following three relevant aspects: Fault detection: it consists 
in discovering the existence of faults in the most useful units in 
the process; Fault isolation: it is referred to locating (classify) the 
different faults; and Fault analysis or identification: it consists in 
determining the type, degree, and origin of the fault [32].  

In this paper, a fault is considered as the consequence of a 
sequence of discrete events representing this faulty scenario, 
and not a single fault event. In sum, a super-alarm corresponds 
to a new element resulting from a diagnosis process in which risk 
and hazard analysis are required.  To design and construct super-
alarms in a supervisory system requires a methodology that gives 
us relevant information of the process according to the events 
and procedural actions that had occurred. A methodology for 
generating super-alarms is described.

with Acts of God or events caused by 
men. Emergency management includes 
the following four phases: preparation 
(before), mitigation (before and after), 
response (during) and recovery (after). The 
main objectives of planning for managing 
emergencies are people, the protection of 
property, and the protection of operations 
and standardization of tasks.

Prior to including a new layer on the typical 
protection layers, diagnosis in industry 
processes includes procedures, activities, 
and tools that help operators recognize 
the actual plant situation, especially during 
transition stages when the risk of accidents 
increases. Figure 4 shows process safety 
relationships, protection layers (Loop, 
Alarm, and Trip) involving supervision 
scheme components where the first level 
includes system instrumentation and 
actuators, added to the Safety Instrumented 
System (SIS). The next level contains the 
acquisition and control equipment followed 
by the supervision stage, in which the 
diagnosis tools are implemented. 

Figure 5. New protection layer (Super-alarm: Diagnosis stage)
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4. EXPERIMENTAL DEVELOPMENT

CHRONICLE BASED ALARM MANAGEMENT – CBAM

The principle of Chronicle Based Alarm Management –CBAM- 
is to consider several process situations (normal or abnormal) 
during start-up and shutdown stages and to model each of these 
situations through a learning chronicle. Thus, given the situation to 
be modeled, the algorithm HCDAM (Heuristic Chronicle Discovery 
Algorithm Modified) is fed by a set of event sequences structured 
from simulations and expert knowledge, giving us the respective 
chronicle of each situation [36]. Finally, with the chronicle built, 
a super-alarm can be generated giving to the operator’s relevant 
information and assuming it as a new layer of protection to reduce 
accident occurrences because in many situations of alarm flood, 
hazard scenarios exist. The overarching objective of CBAM is to 
generate a chronicle database on which a diagnosis process based 
on chronicle recognition is then performed. This new methodology 
relies on three main steps summarized here in below: 

STEP 1: Event type identification: The aim is to determine event 
types that define the chronicles. Data from the standard operating 
procedures and the evolution of the continuous variables are used. 

STEP 2: Event sequence generation: Based on expertise and on 
an event abstraction procedure, this step determines the date 
of occurrence of each event type to build representative event 
sequences used by a learning algorithm. A representative event 
sequence is the set of event types with their dates of occurrence 
that can be associated with a specific process scenario. The 
representative event sequences are then verified using the hybrid 
model of the system and the hybrid causal graphs. 

STEP 3: Chronicle database construction: For each scenario, the 
representative event sequences and temporary restrictions given 

 Lj ∈ Δ, see equation (1).

When Lj = N, the chronicle is a model of the normal behavior of 
the system, otherwise (Lj = fj ) the chronicle is a model of the 
system behavior when threre is occurrence of a fault fj . This 
methodology (CBAM) was aimed at addressing the difficulty of 
alarm management by promoting reliable tools to support the 
analysis of event streams and identify scenarios that can generate 
normal or abnormal circumstances in complex flows [38]-[39].  
The challenge is then to fit the formal recognition of behaviors 
in the context of Complex Event Processing.  The dynamics of 
a process can be represented by an approach that depicts the 
behavior of the process using events occurring during the process 
evolution.  In this context, the chronicle approach [40] has been 
used in numerous applications to recognize situations and often 
with a diagnosis objective. 

Chronicles are patterns supported by a set of observable events 
and a set of temporary constraints between pairs of events. One 
of the main difficulties of situation recognition based on chronicles 
is to obtain automatically a chronicle base that represents each 
situation of interest.  Diagnosis by situation recognition (chronicle-
based diagnosis) in start-up and shutdown stages of mining/
mineral/metal/chemical/petrochemical processes as a support 
to human operators is the principal goal of this new methodology 

 =

⎣
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⎥
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⎤

  (1) 

by experts are considered as learning 
chronicles. For learning chronicles, this step 
uses the extended version of the Heuristic 
Chronicle Discovery Algorithm (HCDAM), 
which is described in [9],[37]. The set of 
chronicles learned for each scenario and 
each process element constitutes the 
chronicle database. A complex process 
Pr is composed of different units or areas 
Pr = {Ar1 , Ar2 , Ar3  ……. Arn } in which each 
area has φ operational modes (e.g start-
up, shutdown, slow march, etc.) noted Oi , 
i = 1,2,3 .. φ. The process behavior in each 
operating mode can be either normal or 
faulty.  The set of failure labels are defined 
as Δf  = { f1 , f2 ,f3 …. fr } and the complete 
set of possible labels is Δ = N⋃Δf , where 
N means normal.  To monitor the process 
and to recognize the different situations 
(normal or faulty) of the operational modes, 
we propose building a chronicle base for 
each area.  For a given area, a learned 
chronicle Cij

m is associated to each couple 
(Oi ,Lj ) in which Figure 6. Diagnosis by situation recognition

DIAGNOSIS BY SITUATION RECOGNITION DURING STARTUP/SHUTDOWN STAGE
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and it is summarized in Figure 6, in which ”super-alarms” can be 
generated according to the scenarios detected by the chronicles. 
Note that the chronicle database is created offline, when there 
are flow events in the process, the chronicle recognition system 
detects if the events match the chronicle that represents one 
specific scenario. The chronicle recognition system corresponds 
to an algorithm that uses the event flow to recognize a specific 
chronicle according to the evolution of the discrete events in the 
timeline.

Further, the methodology introduced integrated different 
techniques to take the hybrid characteristics of the system 
into account.  Data on procedural actions and the behavior of 
continuous variables are analyzed to extract the representative 
event sequences. Another important aspect of this work is 
the dynamic alarm management. Indeed, most of the time the 
alarm is assumed to be a static indicator, while in this proposal 
an alarm is an event with an occurrence date and the alarm flow 
is formally modeled by a chronicle [37]-[39]. The important 
contribution is the exploitation of chronicle recognition as a super 
alarm generator providing operators relevant information about 
the process situation. A new extension of the protection layer of 
protection corresponding to a diagnosis step based on chronicle 
recognition should have to be integrated into the global safety 
structure increasing the reliability of the protection layer related 
to the operator intervention.

CASE STUDY - HYDROSTATIC TANK GAUGING SYSTEM

The technological transformation of the Cartagena Refinery 
in Colombia have incorporated news components such as the 
atmospheric hot tower, the vacuum tower, the Hydrostatic Tank 
Gauging (HTG) system, and the vacuum oven between other 
elements. Our proposal aims to help the operator to recognize 
dangerous conditions during the start-up stage of the refinery with 
modified equipment [9]. The unit analyzed in this paper is the water 
injection unit on its start-up and shutdown stages, see Figure 7.

The continuous variables measured are the level of the tank L, the 
pressure Po in the pump and the outlet flow Qo(V2) in the valve 
V2.  For the start-up stage in this process, the initial conditions 
are that tank (TK) empty, valves V1 and V2 closed and pump Pu is 
off. In this situation, the alarms for low levels in all the continuous 
variables (L, Po, and Qo(V2)) are active. For the shutdown stage 

in this process, the initial conditions could vary, depending on 
the situation in each system . For example, one condition is that 
the outlet pressure (Po) has passed its high limit activating the 
alarm PAH (Pressure Alarm High), but the outlet flow (Qo(V2)) 
does not increase over its low limit after a specific number of 
time units has passed. The standard operating procedure dictates 
the standard procedural actions for the start-up and shutdown 
stages. For proper execution of these procedures, the operators 
must carry out actions according to the correct evolution of the 
procedure. Abnormal situations are detected when the evolution 
of the procedural actions and the continuous variables evolution 
do not match the standard operating procedure and fault events 
occur. The fluctuations of the inlet flow to the tank, the response 
time of the pump that affect outlet pressure and other conditions 
generate uncertainties that can be determined based in expertise 
as obtaining a complex model to simulate all process uncertainties 
requires significant time and resources.

HYBRID FEATURES OF THE HTG SYSTEM

In this paper, the hybrid system is represented by an extended 
transition system, which discrete states represent different 
operating modes, with continuous dynamics characterized by 
a qualitative domain [41]. Formally, a hybrid causal system is 
defined as a tuple  Γ = 〈V , D , Tr , E , CSD , Init , COMP , DMC 〉.
Where:

• V = { υi } is a set of continuous process variables that are a 
function of time.

•  D is a set of discrete variables. D=Q⋃K⋃VQ

 °  Q is a set of states qi of the transition system that 
represent the system operation modes.

 °  The set of auxiliary discrete variables K = {Ki }, i = 1,2,3,….
nc represents the system configuration in each mode 
qi , in which Ki indicates the discrete state of the active 
components.

 °  VQ is a set of qualitative variables whose values are 
obtained from the behavior of each continuous variable υi 

 
• E = Σ⋃Σc  is a finite set of observable (Σo) and unobservable 

(Σuo) event types,  noted σ, in which:

 °  Σ is the set of event type associated to the procedural 
actions, for example in the start-up or shutdown stages.

 °  Σc is the set of event type associated to the behavior of 
the continuous process variables.

•  Tr: Q × Σ → Q is the transition function. The transition from 
mode q_i to mode qj with associated event σ is noted(qi ,σ ,qj ).

•  SD ⊇ ⋃i CSDi is the Causal System Description or the causal 
model used to represent the constraints underlying the 
continuous dynamics of the hybrid system.

Every CSDi associated to a mode qi , is given by a graph Gc =V∪K,I. 
In which, I is the set of influences in which there is an edge 
ϵ(υi ,υj ) ∈ I from υi ∈V  to υj ∈ V  if the variable υi influences variable 
υj . A dynamic control model DCMIk is associated to every influence 
Ik∈ I. Figure 8 presents the Dynamic Control Model, which relates 
one procedural action σi  as an observable event that connects the 
industrial controller (PID) with the model of the active component 
(Comp. model). Model that corresponds to a delayed first order 

Figure 7.  Hydrostatic Tank Gauging
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transfer function. The event that close the control loop σj is 
assumed as an unobservable event.

With respect to the case study, this process is an HTG (Hydrostatic 
Tank Gauging) system comprised by the following items: sensors, 
passive and active components. The sensors are the level sensor 
(LT), the pressure sensor (PT), the inflow sensor (FT1), and the 
outflow sensor (FT2). The passive component is the tank (TK); 
in addition, the active components are two normally closed 
valves (V1 and V2), and one pump (Pu). Since there are three 
active components, the HTG system obviously involves hybrid 
behavior. Modeling the behavior of this hybrid system involves a 
set of continuous variables and a set of discrete variables. The 
continuous variables are level L, pressure Po, and outflow Qo(V2), 
V = {L, Po, Qo (V2) }. On the other hand, the discrete variables (D) 
are:
 
• The states Q of the transition system represent the system 

operating modes. The HTG has thus 23 = 8 configurations and 
operating modes denoted q0 to q7 due to the two valves (V1 
and V2) each with two possible modes (opened and closed); 
and the pump (Pu) with two possible modes (ON and OFF), 
see Figure 9, in which the bold lines indicate that the causality 
relationship between the variables is activated.

• VQ the set of qualitative variables values (Low, Medium and 
High) are obtained from the behavior of continuous variables. 
In this case study, continuous variable domain partitioning has 
been chosen according to expert knowledge and to limit values 
specified in standard operating procedures. VQ = {LL,LM,LH } ∪ 
{PoL,PoM,PoH } ∪ {Qo(V2)L,Qo(V2)M,Qo(V2)H }. 

• The set of auxiliary discrete variables indicating the state 
of active components is given by: K = {Ki }, i = 0,1,…7 i.e, the 
system configuration associated to an operation mode. The 
configuration is defined by the state (opened or closed) of the 
two valves and the state of the pump. For a normal start-up, 
the HTG evolves through the modes q0 , q1 , q4 , q5 , and q7. In 
mode q0 , the two valves are closed and the pump OFF, then 
K0 = 0. When the valve V1 is opened, the system passes to the 
mode q1 and K1 = 1. The system can evolve to q4 if the valve V1 
is opened, then K4 = 4, or it can evolve to q5 if the pump Pu is 
turned ON, then K5 = 5. Finally, for q7 , both valves are opened 
and the pump turned ON, then K7 = 7, see Figure 8.

In each operating mode, the variables evolve according to its 
dynamics. This evolution is represented with qualitative values. 
The domain d(Vi ) of a qualitative variable Vi ∈ VQ is obtained 
through the function fqual :d(υi ) → d(Vi ) that maps the continuous 
values of variable υi to ranges defined by limit values (High noted 
Hi and Low noted Li ), see equation (2).

The behavior of these qualitative variables is represented in Figure 
10 by the automaton  GVi = (VQ ,Σc,γ) where VQ is the set of the 
possible qualitative states (Vi

L : Low,Vi
M: Medium,Vi

H: High) of the 
continuous variable υi . Σc is the finite set of events associated to 
the transitions, and γ :VQ × Σc → VQ  is the transition function.

The corresponding event generator is defined by the abstraction 
function fVQ →σ . See equations (3) and (4).

Figure 8.  Dynamic Control Model - DCM -

Figure 9.  Start-up stage of the HTG System: underlying 
DES and Causal System Description

(2) 

Figure 10.  Automaton GVi

(3) 

(4) 
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5. RESULTS
This section presents the results achieved using the CBAM 
methodology with the HTG system. The chronicles obtained are 
for the following scenarios: normal start-up, abnormal start-up, 
and normal shutdown; the three steps of this methodology to 
generate these chronicles are described below.

STEP 1: EVENT TYPE IDENTIFICATION

In the HTG system of the case study, the set of event types Σ that 
represent the procedure actions is:

Where V1 (resp.  V2) represents the action that switches the valve 
V1 (resp. V2) from closed to opened. On the other hand, v1 (v2) 
represents the action that switches the valve V1 (resp. V2) from 
opened to closed and PuO (resp. PuF) for the action that turns on 
(resp. off) the pump. The event M2A corresponds to the transition 
from “manual” to “automatic”, closing the control loops. In the 
reminder, we assume that this is the only unobservable event of 
the system, i.e. M2A∈ Σuo. The underlying DES (Discrete Event 
System) of the HTG represents the sequence of observable 
procedure actions for a start-up stage (indicated red or green 
arrows on Figure 8 corresponding to the evolution of the operating 
modes (I.e q0 ,q1 ,q4 ,q5 , q7 ) Each operation mode qi is associated to 
a causal system description to identify the influences between the 
variables L, Po and Qo(V2), see Figure 8. These influences allow 
to determine the occurrence of events Σc (see equation 6). For 
instance, in the q1 operating mode, it can be determined that when 
valve V1 is opened, the continuous variable QiTK influences variable 
L, and thus the supervision system will wait to the event L(L), which 
indicates that after a specific period, the water level in the tank TK 
has passed its low limit.

STEP 2: EVENT SEQUENCE GENERATION

The behavior of variables is obtained from simulations, and the 
learning event sequences are generated according to the evolution 
of the system in each scenario. Three scenarios are analyzed in this 
paper: normal start-up, abnormal start-up, and normal shutdown.

SCENARIO 1, NORMAL START-UP:

According to standard procedural actions, the first event type that 
must occur is V1 (Open V1). After this type event occurrence, the 
system is in the q1  operating operating mode  in which variable L 
increases and the event type L(L) must occur after that the valve V1 
is opened, indicating that the liquid level of the tank TK has passed 
the low level limit. After L(L), the liquid in the tank must reach 
the high limit level and event type H(L) must occur. At this point 
in time, the ordered sequence of event types that has occurred is 

(5) 

(6)

V1, L(L), H(L). The high limit of the level in the tank is the condition 
for continuing with the procedure actions “open V2” and “turn on 
Pu” (V2 and PuO). If the operator opens valve V2 first, the system 
passes from q1 to the operating mode q4 , but if the pump Pu is 
turned on first, then the system passes to q5 . The duration between 
the occurrences of event types V2 and PuO must be 1 time unit, 
leaving the system in operating mode q4 or q5. At this point in time, 
the ordered sequence of event types that has occurred must be V1, 
L(L), H(L), PuO, V2 or V1, L(L), H(L), V2, PuO. 

In scenario1a (V1, L(L), H(L), PuO, V2), the outlet pressure (Po) of the 
pump Pu increases first that the outlet flow (Qo(V2)). Then, after 
V2, pressure Po has passed its low pressure limitand the event type 
L(Po) must occur. Passing the high limit of pressure, (H(Po)) occurs 
after L(Po). In scenario1b (V1, L(L), H(L),, V2, PuO), the event type L(Po) 
occurs after PuO. Now, after L(Po) , L(Qo(V2)) must occur. Subsequently, 
the event type  H(Po)  must occur. At this point, the ordered sequence 
of event types occurred must be V1, L(L), H(L), PuO, V2, L(Po), H(Po) 
, L(Qo(V2))  or V1, L(L), H(L),, V2, PuO, L(Po), L(Qo(V2)), H(Po). In this case, 
the unobservable event type M2A occurs and the control loop is 
closed, putting the system in a steady state. We assume that the 
control loops are closed while L(Qo(V2)) occurs in scenario1a or H(Po) 
in scenario1b. Then, event type h(Po) indicates that outlet pressure 
decreases after the control loops are closed. Similarly, the liquid 
level in the tank TK decreases from the high limit of level  h(L) after 
h(Po) occurs. When this event type (h(L)) occurs, it is assumed that 
the start-up stage ended correctly and the ordered sequences of 
event types must be V1, L(L), H(L), PuO, V2, L(Po), H(Po), L(Qo(V2)), h(Po), 
h(L) or V1, L(L),  V2, PuO, L(Po), L(Qo(V2)), H(Po), h(Po), h(L). For this scenario, 
we opted for representative event sequences (S1, S2 and S3), which 
represent extreme behaviors with all possible sequence order of 
event types. 

The simulation of a normal start-up is illustrated in Figure 
11, showing the evolution of variables L, Po, and Qo(V2). This 
simulation represents only one possible situation in this scenario 
related to the pattern sequence S₁. The values of the variables are 
specified as follows:

• For the variable of level (L), the 0 corresponds to 0 meters, and 
each 0.5 (vertical axis) increase corresponds to 0.5 meters. 

• For the variable of pressure (Po), 0 corresponds to 0 PSI, and 
each 0.5 (vertical axis) increase corresponds to 10 PSI.

• For the variable of outlet flow (Qo(V2)) variable, the division 
of 0 corresponds to 0 lts/s (Liters per second), and each 0.5 
(vertical axis) increase corresponds to 1 lts/s.

• The time (horizontal axis) in the graph is expressed in seconds.



C T& F Vol .  10 Num . 1  June 2 0 2 0 57

Ec op e t r o l

At this point, the representative event sequences must be verified 
using the hybrid causal model. For example, sequence S1 starts 
with the event type V1. Then, the system passes to the operating 
mode q1 and the relationship between QiTK and L is activated, see 
Figure 8. We wait for the occurrence of two event types, first event 
type L(L), and second H(L),. Then, the standard procedure actions 
PuO and V2 must occur passing the system from the operating 
mode q1 , in this case, first to the operating mode q5  and then to q7 
. When the system is in the q5 mode,  the relationship of continuous 
variables L and Po is activated and we wait for the occurrence 
of the two event types: first, L(Po), and second H(Po), in this order. 
Then, when the system is in the mode q7 the relationship of the 
continuous variables Po and Qo(V2) is activated. After that, the 
event type L(Qo(V2)) and the no observable event M2A is activated and 
the control loops are closed. >This event sequence concluded with 
the event types h(Po)  and h(L) in this order. For the other sequences, 
the same procedure is applied.

SCENARIO 2, ABNORMAL START-UP

This abnormal situation is related to a failure in valve V2. In this 
scenario, the sequences of event types are similar to those of a 
normal start-up, until it is detected that there is no increase in the 
system’s outlet flow. When the liquid level in the tank TK reached 
its high limit, the ordered sequence of event types occurred must 
be V1, L(L), H(L), PuO, V2 or V1, L(L), H(L), V2, PuO. In scenario 2a : (V1, 
L(L), H(L), PuO, V2) the event type L(Po) occurs after V2. In scenario2b: 
(V1, L(L), H(L), V2, PuO) the event type L(Po) occurs after PuO. The 
event type H(Po) occurs after L(Po). So, the ordered sequences of 
event types must be: V1, L(L), H(L), PuO, V2, L(Po), H(Po)  or V1, L(L), H(L), 
V2, PuO, L(Po), H(Po) . For this scenario, we chose the representative 
event sequences (S4, S5 and S6) showing extreme behaviors with all 
the possible sequence order of event types. 

The simulation of this abnormal start-up is presented in Figure 
12 m showing the evolution of variables L and Po. Variable Qo(V 2) 
does not appear because the valve V2 had failed. The values of the 
variables are specified as follows:

• For the variable of level (L), the value of 0 corresponds to 0 
meters, each increase of 2 (vertical axis) corresponds to 2 
meters.

• For pressure variable (Po), 0 corresponds to 0 PSI.
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Figure 11.  Simulation of a normal start-up in the HTG system
Figure 12.  Simulation of an abnormal start-up in the HTG 

system

Figure 13.  Simulation of a normal shutdown 
in the HTG system
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SCENARIO 3, NORMAL SHUTDOWN

After detecting an abnormal start-up situation, a shutdown 
procedure must be executed. According to the foregoing (Scenario 
2), it is assumed that after the abnormal start-up is confirmed, 
standard procedure actions v1, v2, and PuF must be developed. For 
this scenario, we chose the representative event sequences (S7, S8 
and S9) that represent the extreme behaviors with all the possible 
sequence order of event types. 

The simulation of this normal shutdown is presented in Figure 13, 
showing the evolution of variables L, Po, and Qo(V2). The values of 
the variables are specified as follows:

• For the level variable (L), 0 corresponds to 0 meters, and each 
increase of 1 (vertical axis) corresponds to 1 meter. 

• For the pressure variable (Po), 0 corresponds to 0 PSI, and each 
increase of 1 (vertical axis) corresponds to 20 PSI. 

• For the variable of outlet flow variable (Qo(V2)), the division of 
0 corresponds to 0 lts/s (Liters per second), and each increase 
of 1 (vertical axis) corresponds to 2 lts/s. 

• The time (horizontal axis) in the graph is expressed in seconds.

This simulation represents only one possible situation in this scenario 
related to the representative sequence S7. The procedure evaluation 
of this event sequences is similar to the procedure developed in  
other settings. In this scenario, event types v1, v2, and PuF are 
involved in the shutdown procedure.
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STEP 3: CHRONICLE DATABASE CONSTRUCTION

This chronicle database is to be submitted to a chronicle recognition 
system that identifies, in an observable flow of events, all the 
possible matching with the set of chronicles. Chronicles are used 
to assess the situation (normal or faulty), by generating a super 
alarm. The following three chronicles (C 1

10, C 1
11 and C 1

20) of the 
set of chronicles of the HTG (Hydrostatic Tank Gauging) system 
are presented, i.e those in the area Ar1 of the whole system. C 
1

10 is the chronicle for the normal start-up stage of the HTG, C 1
11 

is associated with a failure behavior of type f1 during a start-up 
stage, and C 120 corresponds to a normal shutdown. In the chronicle 
figure, the events are specified as follows: L(L) as LL; l(L) as lL; H(L) as 
HL; h(L) as hL; L(Po) as LP; L(Po) as lP; H(Po) as HP; h(Po) as hP; L(Qo(V 2)) 
as LQ; l(Qo(V 2)) as lQ; H(Qo(V 2)) as HQ; h(Qo(V 2)) as hQ.

SCENARIO 1, NORMAL START-UP:

For this scenario, the following temporal restrictions represent 
the expert knowledge used in the extended version of the HCDAM. 
TRLL,V2 = LL[30,32]V2, this temporal restriction means that valve V2 
is opened between 30 and 32 time-units after reaching the low limit 
(LL) level in the tank. TRPuO,V2 =PuO[−2,2]V2, this temporal restriction 
indicates that valve V2 can be opened (V2) two time-units before 

Figure 14.  Directed graph (G ) of the chronicle C 1
10

the pump Pu is turned on (PuO) or, on the contrary, PuO occurs two 
time-units before V2. TRHL,V2 =HL[1,5]V2, this temporal restriction 
means that valve V2 is opened between 1 and 5 time-units after 
reaching the high limit level (HL) in the tank. The chronicle C 1

10 
resulting after using the algorithm HCDAM is presented in Figure 
14. The learning event sequences used are S1, S2 and S3, generated 
in the event sequence generation section (normal startup).

SCENARIO 2, ABNORMAL START-UP:

For this abnormal start-up scenario, the following temporal 
restrictions are used in the extended version of the HCDAM. 
TRPuO,V2=PuO[−2,2]V2, this temporal restriction means that valve 
V2 can be opened (V2) two time units before the pump Pu is turned 
on (PuO) or, on the contrary, that PuO occurs 2 time units before 
V2. TRHL,PuO =HL[1,4]PuO, this temporal restriction expresses that 
the pump Pu is turned on (PuO) between 1 and 5 time-units after 
reaching the high limit level in the tank (HL). The chronicle C 111 that 
resulting after using the algorithm HCDAM is presented in Figure 
15. The learning event sequences used are S4, S5 and S6, generated 
in the event sequence generation section (abnormal startup).

SCENARIO 3, NORMAL SHUTDOWN:

In this normal shutdown scenario the following temporal restrictions 
were used, which represent the expert knowledge used in the 
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Figure 15.  Directed graph (G ) of the chronicle C 1
11

Figure 16.  Directed graph (G ) of the chronicle C 1
20
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Figure 17.  Activation of V1 at 1

6. RESULTS ANALYSIS
This section presents the evaluation of chronicle C1 11 that 
represents the temporal pattern for an abnormal start-up in the 
HTG system. One sequence of evaluation that belongs to this 
abnormal scenario is described below: Seval=⟨(V1,1);(LL,26);(HL,58)
;(PuO,60);(V2,62);(LP,70) ;(HP,85)⟩.  Figure 17 to Figure 23 present 
the recognition process of the chronicle and the generation of one 

extended version of the HCDAM. TRPuO,V2 =PuO[−3,4]V2, this 
temporal restriction means that valve V2 can be opened (V2) 3 time-
units before the pump Pu  is turned on (PuO) or, on the contrary, PuO 
occurs 4 time-units before V2. TRHP,Pu F=HP[2,6]PuF, this temporal 
restriction means that the pump Pu is turned off (PuF) between 2 
and 6 time-units after reaching the high limit (HP) of the pressure 
Po. The chronicle C 1

20 resulting after using the algorithm HCDAM 
is presented in Figure 16. The learning event sequences used is 
S7, S8 and S9, generated in the event sequence generation section 
(normal shutdown).

super alarm. We can see that in Figure 17 the first occurrence is 
(V1, 1), the next occurrence must be that of event LL between 20 
and 28 time-units. Now, in Figure 18 the activation of LL at 26 is 
shown, indicating also that the next occurrence must be HL. The 
following events occur (PuO, V2, LP and HP) until the chronicle 
is recognized and the super alarm is generated. Therefore, this 
new element (super-alarm) corresponds to one superior alarm 
that provides the operators with relevant data after a diagnosis 
process, thus increasing the reliability of this protective layer.

Advantage of the system using super-alarms: 

Without this super-alarm, the risk that the operator will not detect 
an abnormal situation is high because, for them, it is normal that 
the typical alarms occur (high limits, low limits) during transition 
stages. Now, when one super-alarm occurs, the operators can 
determine, according to the type of super-alarm generated, 
what the problem is exactly. Then, they execute the operations 
determined for this abnormal situation and mitigate potential 
hazards in the process.
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Figure 18.  Activation of LL at 26

Figure 19.  Activation of HL at 58
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Figure 20.  Activation of PuO at 60

Figure 21.  Activation of V2 at 62
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Figure 22.  Activation of LP at 70

Figure 22.  Activation of HP at 85, abnormal situation recognized generating a super-alarm

SUPER ALARM
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Óptima utilización del agua (re-uso, 
aprovechamiento agroindustrial, óptima calidad). 

Abatimiento de emisiones fugitivas, cero quemas
en teas y captura y utilización de C02.

Diversificación energética (solar, geotermia e 
hidrógeno).

Petroquímica de residuos del petróleo (ligantes 
asfálticos, charcoal fósil, fibra de carbono, grafeno). 

Optimal use of water (re-utilization, 
agro-industrial use, optimal quality).

Abatement of fugitive emissions, zero
 flaring and capture and use of C02.

Energy diversification (solar, geothermal 
and hydrogen).

Petrochemical of oil residues  (asphalt 
binders, fossil charcoal, carbon fiber, 
graphene).

ENERGÉTICA
y la descarbonización

Hacia la transición

ENERGY
transition and 

decarbonization

Towards


