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ABSTRACT 
The solution of the Helmholtz equation is a fundamental step 
in frequency domain seismic imaging. This paper deals with a 
numerical study of solutions for 2D Helmholtz equation using 
a Gaussian radial basis function-generated finite difference 
scheme (RBFFD). We analyze the behavior of the local truncation 
error in approximating partial derivatives of the 2D Helmholtz 
equation solutions when the shape parameter of RBF varies. For 
discretization, we performed, by means of a classical numerical 
dispersion analysis with plane waves, a minimization of the 
error function to obtain local and adaptive near optimal shape 
parameters according to the local wavelength of the required 
solution. In particular, the method is applied to obtain a simple 
and accurate solver by using stencils which seven nodes on 
hexagonal regular grids, wich mitigate pollution-effects. We 
validated  numerically that the stability and isotropy are enhanced 
with respect to Cartesian grids. Our method is tested with 
standard case studies and velocity models, showing similar or 
better accuracy than finite difference  and finite element methods. 
This is an efficient way for interacting with inverse and imaging 
problems such as Full Wave Inversion
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PARÁMETRO ÓPTIMO 
DE FORMA PARA 
LA SOLUCIÓN DE 
LA ECUACIÓN DE 
HELMHOLTZ 2D EN 
MODELO SIN MALLA

RESUMEN
La solución de la ecuación de Helmholtz es una parte fundamental 
en la modelación sísmica en el dominio de la frecuencia. Este 
artículo realiza un análisis numérico de las soluciones de la 
ecuación de Helmholtz 2D utilizando un esquema de diferencias 
finitas (RBFFD), generado por funciones gaussianas de Base 
radial. Se analiza el comportamiento del error de truncamiento 
local al aproximar las derivadas parciales de las soluciones de la 
ecuación de Helmholtz 2D cuando varía el parámetro de forma 
de la RBF. Para la discretización, hemos realizado, mediante un 
análisis de dispersión clásico con ondas planas , una optimización 
de la función de error para obtener valores locales y adaptativos 
del parámetro de forma de acuerdo con la longitud de onda local 
de la solución requerida. En particular, el método se aplica para 
obtener un programa sencillo y óptimo usando plantillas de siete 
nodos sobre mallas regulares hexagonales, que mitigan el efecto 
polución. Se comprueba numéricamente que la estabilidad e 
isotropía son mejoradas con respecto a las mallas cartesianas. 
Nuestro método es probado con casos de estudio y modelos de 
velocidad estándar, mostrando exactitud similar o mejor que los 
métodos de diferencias o elemento finitos. Esta es una manera 
eficiente de interactuar con problemas inverso y de imagen tales 
como la inversión de onda completa
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The Helmholtz equation is an elliptic partial differential equation 
that represents time-independent solutions of the wave equation. 
This equation models a wide variety of physical phenomena. These 
include among others, acoustic wave scattering, time harmonic 
acoustic, electromagnetic elds, water wave propagation, membrane 
vibration and radar scattering. All these applications make getting 
accurate numerical solution for the Helmholtz equation the object 
of a large number of investigations and methods such as finite 
differences spectral elements, finite elements method and boundary 
elements.

Intended for of seismic modeling and inversion, this paper deals with 
the problem of acoustic and constant density wave propagation on 
a rectangular domain Ω by solving the Helmholtz equation.

where � is angular frequency, c(x) > 0 is a smooth function that 
represents the propagation speed of the wave and f(x) is a compactly 
supported distribution in � that represents the source distribution. 
We consider boundary conditions (Dirichlet, Neumann and 
absorbing boundary conditions [5]) on the border δΩ and perfectly 
matched layers(PML) [1],[16] on an artificial extended domain a  
Ω�⊃Ω. 

When solving (1) at high frequencies by standard numerical methods 
the wavelength of the numerical solution is different than the real 
one λ(x) = 2π/k(x), where k(x) = ωc(x)−1 is the so-called wavenumber. 
This discrepancy of wavelengths is known as pollution effect[2],[17]. 
To obtain a better solution, it is necessary to oversample the solution 
by increasing the number of points per wavelength Ng, which has as 
drawback more computational cost, time and memory. For these 
and other facts the design of fast and stable solvers for Helmholtz 
equation has become a significant computational challenge.

Seismic information of good quality about the earth's subsurface 
structures is the rationale for geophysical applications. The oil and 
gas industry uses computational intensive algorithms to provide 

RBF INTERPOLATION

interpolation with Radial Basis Functions the objective is to 
reconstruct a d-variate function u defined on a bounded domain 
Ω⊂ℝd from the values u(xk) of u on a finite set of N scattered points 
X = {x1;x2; ... ;xN} ⊂Ω⊂ℝd. A radial basis function with shape parameter
� is defined as ɸ�:ℝdxℝd→ℝ [6],[31], [34] such that ɸ�(x,y)=ɸ(�||x-y||), 
where ɸ:[0,∞)→ℝ is an univariate function. A sufficiently smooth 
function u:ℝd→ℝ can be approximated by the interpolant.

By forcing the condition PX,�u(xk) = u(xk) for k = 1,...,N, the weights αj 
can be determined by solving the linear system.

an image of the subsurface. Information is obtained by sending 
elastic energy into the subsurface and recording the signal required 
for a seismic wave to be reflected back to the surface from the 
Earth interfaces that may have different physical properties. In 
the petroleum industry, accurate seismic information for such a 
structure can help in determining potential oil and gas reservoirs 
in subsurface layers. The seismic wave is usually generated by 
shots of known frequencies, placed on the earth's surface, and the 
returning wave is recorded by instruments also placed along the 
earth's surface.

Helmholtz equation solutions are essential in frequency domain 
seismic imaging methods such us full waveform inversion 
(FWI), which requires to solve this equation several times [34].
The traditional Finite Element Method (FEM) or standard Finite 
Differences (FD) produce sparse matrices but for a few degrees 
of freedom, there may be a strong pollution effect for large values 
of the wavenumber. [3],[4],[38] obtain solvers that mitigate 
the pollution effect in the high frequency regime. Recently, [13] 
developed a solver by using numerical micro-local analysis and 
ray-based finite elements method to achieve accurate local finite 
element space. Furthermore, global radial basis functions are more 
accurate but produce full matrices that become unstable.

Recently, [25] proposed a RBF-FD solver for frequency domain wave 
propagation and suggested  that the approximated solution does 
not disperse at relatively high frequencies. In [8] There is an up to 
date view of the theory and applications of Radial Basis Functions 
and RBF-FD methods in the numerical solution of partial differential 
equations with examples in Geosciences and seismic problems.

This paper develops and applies a RBF-FD method on hexagonal 
grids that solves the Helmholtz equation for a wide range of 
values of the wavenumber k, focusing in obtaining accurate local 
approximations of the partial derivative operators by using a few 
degrees of freedom. Direct solvers may be applied to the banded 
matrices obtained; in particular we use UMFPACK.

INTRODUCTION1

2. THEORICAL FRAMEWORK 

provided that the interpolation matrix ɸX,�  = ɸ�(xk ,xk))1≤k,j≤N  is non-
singular and hence the interpolant PX,�u with

In particular, applying the Gaussian function ɸ(r)=e−r2, the 
interpolation matrix ɸX,� is positive definite. Some important results 
about the convenience and properties of interpolation with this 
function can be found in [6].

The order of the approximation u(x) ≈ PX,�u (x) can be measured by 
the fill distance of X in Ω defined by 

(1)

(2)

(3)

(4)
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and the stability [34] by the separation distance of X defined by

It is worth noting that RBF interpolation is meshless because it 
can be applied to scattered data with no dependence on point 
distribution. This property and the values of the shape parameter � 
are commonly used to choose a geometry that may improve some 
performance or relevant aspects of the problem.

GLOBAL COLLOCATION METHOD WITH RBF

In recent years there has been increasing interest for obtaining 
approximated solutions of partial differential equations by the 
collocation method via RBF interpolation, either by unsymmetrical 
collocation or symmetric collocation [29]. Details for the latter 
can be consulted in [35]. Next, the unsymmetrical method will be 
described [19]. Under the RBF interpolation framework, we want to 
approximate the solution of boundary value problems in the formula

where ℒ and ℬ are linear partial differential operators with regular 
coefficients have a regularity that is good enough. It is assumed 
that (7) it is a well-posed problem. Let X = {xi}N

i=1 ⊂Ω∪∂Ω be a set 
of points conveniently separated as {xi}

m
i=1 ⊂Ω and {xi}N

i=1 ⊂∂Ω.  If it is 
supposing that the unique solution of (7) can be approximated by the 
interpolant PX,� in (2), the problem may be forced by the equations

arising from the linear system

and by (4), obtaining the following linear system whose unknowns 
are the u values at the points of X

To get the approximated solution ~u from (10), it is necessary 
that the collocation matrix (ℒɸε,x∩Ω ℬɸε,X∩∂Ω)t be non-singular, 
which in general is not true. An elaborated counterexample using 
multiquadrics and Gaussians was presented in [15]. However, under 
certain conditions, unsymetrical collocation method is feasible 
from a generalized approach using separated trial and test spaces 
[23],[24].

(5)

(6)

(7)

(8)

(9)

(10)

DISCRETIZATION BY RBF-FD 

For problems requiring to compute solutions on large domains 
good resolution, the resultant matrix obtained by the collocation 
method is dense, huge and ill-conditioned, implying a prohibited 
computational cost. A variant of RBF collocation method enabling 
to deal with large domains is the local version [33],[36]. A local 
interpolation is possible to obtain a sparse matrix that represents 
the linear partial differential operator. This approach is often called 
Radial Basis Function-generated Finite Differences method (RBF-
FD). The RBF-FD method is the following.

Let X = {xi}N
i=1 ⊂Ω∪∂Ω be a set of interpolation points. For any xi ∈ 

X an influence domain Si ⊂ X is created which is formed by the ni 
nearest neighbor interpolation points. That is, consider an ni-stencil 
Si = {xi

j}ni j=1 ⊂ X, where xi
1 ≡xi and Ωi = ConvexHull(Si). This is how the 

subsets {Si}N
i=1 of points contained in X. u(x) are formed, which be 

approximated by RBF interpolation for x ∈ Si as

with x ∈ Ωi. On the shape parameter εi is on depending on the location 
xi. This allows to manipulate the shape of the RBF according to 
known data. Collocating the ni points of the stencil Si, results in a 
small linear system given by

with Ui=(ũ(xi
1) ũ(xi

2)... ũ(xi
ni))t.ɸεi,Si=(ɸεi(xi

j,xi
k))1≤j,k≤ni is the local in-

terpolation matrix and αi=(αi
1,αi

2,...,αi
ni)t.

The unknown coefficients αi in (12) can be expressed in terms of the 
function values at the local interpolation points as

The inverse matrix ɸ-1
Si,εi exists because of the positive definiteness of 

ɸSi,εi [6]. Now, with the aim of obtaining a local discretized version for (7) 
consider xi ∈ Ω∩X or Xi ∈ ∂Ω∩X. In both cases a linear partial differential 
operator must be applied, either ℒ or ℬ, to equation (11). For xi ∈ Ω  
it follows

where
ℒ ɸ-1

Si,εi=(ℒɸεi,(xi
1, xi

1)... ℒɸεi, (xi
1, xi

ni)).
Similarly, for Xi ∈ ∂Ω∩X

We denote ℒSi,εi]= ℒ ɸ-1
Si,εi ɸ-1

Si,εi and ℬSi,εi = ℬ1
Si,εi ɸ-1

Si,εi. From (14) and (15) 
it follows a discretized local version of (7)

(11)

(12)

(13)

(14)

(15)
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The above system of linear equations can be assembled forming 
sparse matrix H of size N × N where the i−th row, associated to xi ∈ 
X, has at most ni nonzero entries,and the unknown matrix is given 
by U = ũ(x1) ũ(x2)...ũ(xN) (recall xi≡x i1).

An approximated solution ũ(x) at all the interpolation points can 
be obtained by solving HU = F. H can be considered a discretized 
version of the operator ℒ including the boundary conditions involved 
in (7). The foregoing discussion gives rise to the following definition.

Definition 1. Let ℒ:  Ck(Ω)→ Ck-m (Ω) be a linear partial differential operator 
of order m, where Ω ⊂ ℝd is open and bounded. For u ∈ Ck(Ω) and x ∈ Ω   
consider an n−stencil Sx= {xi}n

i=1 ⊂ Ω∪∂Ω of nearest neighbors to x. 
Here x1≡x. The Gaussian RBF-FD operator associated to L denoted 
by ℒSx,ε is defined by

where

and ɸε(y;xi) = ℯ−ε2||y−xi||2 with ε > 0. The Gaussian weights matrix 
of ℒ at Sx is defined by

initially the application of Gaussian RBF-FD implies the solution 
of a small linear system at every node in order to compute weight 
matrices, a condition that increases the computational complexity of 
the problem. There are situations where the non-singular matrix ɸSx,ε 
is ill-conditioned, principally for small values of ε. In these events the 
RBF is near to the flat limit, however this issue has been overcome 
by using different methodologies resulting in stable calculations 
of (20), for example [10]-[12],[22], and recently [26] have used an 
hybrid kernel that is formed with two weighted terms, one Gaussian 
and another cubic which is given by '𝜑(r) = αℯ−(εr)2+ βr3,so this new 
hybrid kernel now involves three parameters.

Some RBF's do not contain a shape parameter ε. One well known 
example are polyharmonic splines 𝜑(r) = r2m log r,m ∈ ℕ and 𝜑(r) = 
r2m;m ∉ ℕ. In general a RBF interpolator has the form

where p(x) is a low degree polynomial. The inclusion of p(x), 
determines the invertibility of the interpolation matrix and this can 
be explained in terms of the theory of conditionally positive definite 
functions (for a wider perspective the reader may consult [34],[6]). 
For example polyharmonic splines include p(x), while the gaussian 
function does not. 

(16)

(17)

(18)

(19)

(20)

Up to now two kinds of RBF's have been applied in RBF-FD methods 
(i) infinitely smooth RBF's (which is the approach used in this paper) 
which contains a shape parameter. In this case is possible to get 
a high degree of accuracy in the solution although it is necessary 
to design strategies or algorithms for tuning the best value of the 
shape parameter and (ii) polyharmonic splines combined with the 
polynomial term RBF(PHS)- FD for short. This combination is free 
from a shape parameter but depends on the choice of PHS and 
polynomial degrees. ɸ(r) is less in uential but p(x) cannot exceed 
a certain maximum, which increases with the local support size. 
Thus, the error estimates of RBF(PHS)-FD will depend on knowing 
the maximal permissible degree of supplementary polynomials (see 
Fornberg's book [8] for further information).

In this work, to obtain a relatively cheap solver, we focused on 
obtaining predictable weights with closed formulas depending on ε 
and h, ε will be adaptable according to the minimum local truncation 
error at position x. So we will be exploring within small stencils of 
node sets distributed on regular grids. The node density distribution 
may cause problems as to accuracy of the method. [8] discuss some 
methods in quasi-uniform node sets. In order to avoid point sets 
with sharp density differences we apply the algorithm from [30].

SHAPE PARAMETER FOR SOLUTIONS OF HELMHOLTZ
EQUATION 

For an homogeneous media the propagation of time-harmonic 
waves is modeled by Helmholtz equation with wavenumber k = ωc−1 
where c is the sound speed and ω is the angular frequency. From the 
Fourier optics standpoint a time-harmonic wave can be seen as a 
superposition of plane waves and from the stationary phase method 
the timeharmonic wave field, at distant points, is due to a plane wave 
component; therefore it makes sense to consider planes waves as 
a key part of the analysis. Wave planes are a fundamental tool for 
investigating the behavior of numerical solutions for Helmholtz 
equation, either to reduce pollution effects or to design higher 
order discretizations, in this token, there are recent works such as 
[18] and [13].

Described below the method to obtain adequate shape parameters 
on general stencils for approximating a linear dierential operator ℒ 
with smooth coefficients.

when it is applied to solutions of Helmholtz equation. Let 
pℒ(ξ,Ƞ)=∑r,slr,s(x) ξ rȠs be the symbol of the linear differential 
operator ℒ [37]2. In particular consider plane waves given by 
u(x;K,ξθ)=ℯik(xcosθ+ysinθ), therefore u satises

Let S = {xj}n
j=1 be an n−stencil with respect to x1 = x = (x, y). The local 

truncation error by the approximation ℒS,∈u(x; k; θ) is given by

(21)
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where US0 = (u(x1 − x; k; θ)...u(xn − x; k; θ))t. Note that

does not depend explicitly of x. We introduce the averaged local 
truncation error �ℒS(ε, k) over all directions θ, by the integral

(22)

(23)

(24)

From the last formula we choose the best shape parameter εℒ,S(k), by

Figure 1 . Local truncation error approximating Δu1(xc) for several stencil size. u1(x)=i-4H(1)
0 (k|x-xs|)+ 1--15u(x;k,�/4), in the figures Xc is the 

biggest point in black; at xc, k = 9; 56 and Xs = (3:5; 0:5). Node distribution is based on a region of the smooth Marmousi model.

0  1  2  3

0  1  2  3

0  1  2  3

0

1

2

0

1

2

0

1

2

Ng =2 π

Ng =2 π

Ng =2 π

1.5  2

2

2.2

2.4

2.6

2.8

n =25

0
+

2  4  6  8  10
1e-05

1e-04

1e-03

1e-02

1e-01

Re
la

tiv
e 

er
ro

r

RBF-min RBF-GA RBF-QR

1.2    1.4   1.6   1.8  2   2.2

1.8

2

2.2

2.4

2.6

2.8

n =35

0
+

2  4  6  8  10

0
+

2  4  6  8  10

1e-05

1e-04

1e-03

1e-02

1e-01

Re
la

tiv
e 

er
ro

r

1  1.5  2

1.8

2

2.2

2.4

2.6

2.8

n =45

ε

1e-05

1e-04

1e-03

1e-02

1e-01

Re
la

tiv
e 

er
ro

r

RBF-min RBF-GA RBF-QR

RBF-min RBF-GA RBF-QR

In particular, if ℒ = ∂r
x∂s

y, then pℒ(ik cosθ; ik sin θ) = (ik)r+s cosr θ sinsθ. 
Also, since the symbol of Laplace operator is the polynomial pΔ  (ξ,Ƞ) 
= ξ2+ Ƞ2, then pΔ(ik cos θ; ik sin θ) =−k2.

For implementations purposes, we approximated the integral (23) 
by means of Simpson's rule with Δθ=2�/16. To estimate the 
minimum argument (24) we used the Matlab function fminbnd.m, 
which use both Golden-section search and parabolic interpolation. 
This estimate requires roughly range between ten and twenty 
evaluations of (23). At each iteration, ℒ ɸ-1

S,ε  ɸ-1
S,ε is calculated once 

by Cholesky decomposition. With this procedure we try to reduce 
dispersion and pollution effects in numerical solutions of Helmholtz 
equation, calling this algorithm RBF-min.

DISPERSION ANALYSIS

Consider a solution u of Helmholtz equation -Δu(x)-k2u(x)=0. The 
classical dispersion analysis applies the relative phase error |k-kf|/k 
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where kf is the wavenumber of the numerical solution, which locally 
satises

The occurrence of the fictitious wavenumber kf is known as 
numerical dispersion and can be studied by the phase lag |k-kf|. 
However, as the solution of the Helmholtz equation fluctuates 
considerably for large wavenumbers the situation is even worse 
because for measuring the properties of a finite difference scheme, 
considering only the convergence order is not enough. In fact, the 
accuracy of the numerical solution deteriorates with increasing 
wavenumber k even when the resolution factor kh, is kept constant. 
This phenomenon is related to the so-called 'pollution effect' (see, 
[17]). Therefore our next task is to build an strategy to mitigate this 
phenomenon.

To obtain an explicit relation between k and kf we consider the 
plane wave

with propagation angle θ and wave length �=2�/k. According to 
(25) we can take kf as a function which depends on k, θ the stencil 
S and ε, given by its square

Note that the local truncation error (22) for ℒ=Δ is given just by

The fictitious wavenumber is anisotropic, i.e., it depends on the wave 
propagation direction θ. As was the case in [27], our objective will be 
to choose the shape parameter ε such that the average phase error, 
over all angles of propagation, is minimum. Hence in minimizing the 
averaged local truncation error

for the variable ε we can mitigate the pollution effect due to 
dispersion error

Figure 2 . Comparison of runtime in calculations of stable 
weights of results presented in Figure. 1.

Figure 3 . 7−stencil on a regular hexagonal grid.

(25)

(26)

(27)

(28)

10 15 20 25 30 35 40 4
Stencil size

10
-3

10
-2

10
-1

10
0

Ti
m

e
(s

)

RBF-GARBF-min RBF-QR

x 4

x eh

h
x c

x 1

x 6 x 7

x 2x 5

x 3

x w

x nw x ne

x sex sw

SOME CLOSED FORMULAS AND TRUNCATION ERROR 

In the context of numerical solutions of the wave equation, numerical 
stability and isotropy are enhanced with a similar computational 
work when compared with the standard numerical methods in 
the simulation of heterogeneous and random media. For example, 
whereas Von Neumann stability in solution of the 2D acoustic wave 
equation by explicit finite differences with 5−points needs to satisfy 
the estimate Δt-- Δx ≤c-1⎷

-
2--2 , with hexagonal 7−stencil, this estimate is 

improved to Δt-- Δx ≤c-1⎷
-
2--

⎷
-
3 
[7]. Besides, with hexagonal stencils we have 

reached similar results to those reported in [3] where the authors 
have developed an optimal Cartesian 9−stencil for Helmholtz 
equation with the goal of mitigating the pollution effect.

We start considering the 7−stencil H = {xi}7
i=1 , built on an hexagonal 

regular grid as in Figure 3. For h > 0 and x1 = (x; y) as central node, 
the coordinates of the other points in H are given by

Sometimes will be convenient to work with subscripts referred by 
cardinal directions:

With the given labeled order in the 7−stencil H and with p = ℯ−(εh)2, 
the interpolation matrix ɸH,ε is explicitly given by
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From this formula, we seek expressions for (∂x)H,ε, (∂y)H,ε , (∂2
x)H,ε , (∂2

y)
H,ε , (∂xy)H,ε and Δ H,ε applied at u(x1). Using a software of symbolic 
calculus we obtain

where

Also, we note that F1 + F2 = G1 + G2 and denote it by F = F1 + F2 = G1 
+ G2, explicitly

(29)

(30)

(31)

Formulas for partial derivative operators of second order. By simple 
substitutions with the group of equations (31) within of equations in 
(30) we have explicit formulas for approximating partial derivative 
operators of second order

As it is usual in finite differences schemes, once an approximation 
is proposed, the first step is to investigate its local truncation error. 
The standard methodology consists in making comparisons with 
Taylor polynomials. The next lemma will be useful in that sense.

Lemma 1. For 0 < εh < ⎷� --2 the following approximations of weights 
functions in (31) hold

One way to test the quality of the method is to point out the 
relationship with other finite difference schemes. It is not difficult 
to show that the standard finite difference method is the limit of 
the RBF-FD scheme, it occurs when the width of the Gaussian RBF, 
controlled by the shape parameter ε, tends to be at.

Remark 1. By examining the limit situation ε→ 0+ with ΔH,εu(Xc) in 
(33) via approxi-mations in (34) we recover the formula

(32)

(33)

(34)

(35)
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given in [7], corresponding to the standard finite difference 
formulation derived by Taylor expansions.

Local truncation errors. To estimate the local truncation error of the 
approximations ℒH,εu(x) ≈ ℒu(x) it suffices to expand u(xi), for i = 2, 
3; ..., 7, in Taylor polynomials around x1 = xc, and then substituting 
them in (33), obtaining

From Taylor polynomials in (34) the following error can be obtained

from which the error estimates can be obtained for (33) with their 
respective approximation errors

(36)

The above treatment and discussion can be summarized in the 
next result

Theorem 1. Let u be a function in C4(Ω) with Ω⊂ℝ2 a convex open 
set. Then for x ∈Ω , h > 0 small enough such that H⊂ Ω and ε>0 
such that 0 < εh <⎷

�--2 ; the following assertions about the Gaussian 
RBF-FD approximations hold:

•  (∂x)H,εu(x)= ∂xu(x) + 𝒪 (ε2h2)
• (∂y)H,εu(x)= ∂yu(x) + 𝒪 (ε2h2)
• (∂2

x)H,εu(x)= ∂2
xu(x) + 𝒪 (ε2h2)

• (∂2
y)H,εu(x)= ∂2

yu(x) + 𝒪 (ε2h2)
• (∂xy)H,εu(x)= ∂xyu(x) + 𝒪 (ε2h2)
•  ΔH,εu(x)= Δ2u(x) + 𝒪 (ε2h2)

In Figure 4 it is depicted a comparison of RBF-FD with 5−stencils 
and 7−stencils against its respective standard finite differences 
approximations. To conduct this test we chose the Hankel function of 
the rst kind u(x)=H(1)

0  (k|x|) with k = 100 and h = 0:01. We can observe 
the behaviour of the relative truncation error

and

It is worth to point out that in both situations there exist values of  ε  
where the error reaches a minimum value. Furthermore it confirms 
that  the limit situation ε→ 0+, RBF-FD coincides with FD.

(37)

(38)

OPTIMAL SHAPE PARAMETER ON HEXAGONAL STENCIL 

We derive closed formulas to rapidly obtain the optimal shape 
parameter in the context of hexagonal stencils.

(39)

(40)



C T& F Vol .  9  Num . 2 D e c emb er 2 01 9 23

Ec op e t r o l

ε
(a) (b)

ε
0  25 50 75 100  125  150 0  25 50 75 100  125  150

Re
la

tiv
e

Er
ro

r

10-4

10-3

10-2

10-1

100
Approximated ∂x

RBF-FD 7p FD 7p
RBF-FD 5p FD 5p

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Approximated ∆

Figure 4 . Plot of relative error (left) (39) and (right) (40) with x1 = (2; 1:5), k = 100 and h = 0:01
is the stencil size.

(41)

(42)

Remark 2. Let u be a solution of the Helmholtz equation. By 
theorem 1.

for any ε > 0 on a hexagonal stencil H of size h centered at (x; y), we 
have that for small enough h

In this case the ctitious wavenumber kf depends also of the stencil 
size h, so kf = kf (k;θ; h; ε) is such that

As we have already seen, kf is related to the truncation error of the 
Laplace operator applied in u by (k2 − k2

f )u(x, y) = 𝒪 (ε2h2).

In this case, thanks to the symmetry of the hexagonal stencil, it is 
possible to nd an explicit relation between k and kf . From (33) in 
(26) we obtain the formula

where

(43)

(44)

In Figure 5 (left) there is a plot of the residual |�k(k,θ,h,ε)| = |k2 
− k2

f (k, θ,h ε)| where it can appreciated that for some values of ε 
it is possible to have good accuracy even in scaling h for keeping 
hk = 1 or equivalently h = �--2�, that is, by fixing 2� ≈ 6 points per 
wavelength. Next lemma will allow us to introduce a simplified 
variant of (43) which does not depend of θ, by just taking the mean 
value over [0,2�].

Lemma 2. For any (h,k)  ∈ℝ2, T as in (44) satises the equality

where J0 is the Bessel function of first kind.
Proof. First, note that T (k,θ + �--3 ,h) = T(k,θ, h), thus T has period �--3 in 
the second argument and

then, considering the identity

and by a few changes of variable we can finally obtain

(45)

(46)

(47)
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(48)

(49)

(50)

where the last equality is a well known integral representation of 
the Bessel functions. We define  �kf such that

explicitly results in the formula

and we also introduced a new residual function ��k(k,h,ε). We will see
later what is the error between kf (k,h,ε) and �kf(k,h,ε) and �kf (k,h,ε) 
produced by "neglecting" θ in taking the mean value (48).

Lemma 3. Let h and k be positive real numbers with small enough 
h, then

Proof. By supposing 0 < εh<⎷�--2 , using the expansions in (34) at (49) 
and taking ε→ 0+, then lim ε→0+

 ��k(k,h,ε)= h2k2+4J0(hk)−4 .From the Taylor 
series of J0 it is true that

and the inequality is thus obtained. For the second limit note that 
from the explicit formula for (49) given by

we can see that

(51)

In addition, can be observed above that the behavior of ��k(k,h,ε) and 
��k(0,1,ε) when ε →∞ are the same, hence

The above lemma and the continuity of the function ��k(k,h,ε) allow 
us to guarantee that under the condition h > 0 and h > 0 there is 
some value ε > 0 such that ��k(k,h,ε)=0. As we have pointed out, �k
measures the dispersion of the approximation, as well �k, thus, 
given h0 and k0, a good shape parameter would be ε0(k0 ,h0) such that 
�k(k0 ,h0 , ε0 (k0 ,h0))=0. Our strategy to reduce numerical dispersion 
is to find the minimum root of the equation ��k(k0 ,h0 ,ε)=0. For our 
implementations we will be more restrictive by considering 1--4 ≤ hk 
≤1, with this we are choosing h so that for sampling a wavelength 
�=2�---k   it means to use between 2� to 8� points, that is approximately 
between 6 and 25 points per wavelength. Thus, in our discretization 
for the Helmholtz equation on hexagonal stencils we will use the 
shape parameter

Figure 5 (Right) shows the results of a test focused on behavior 
of the optimum shape parameter εop. A linear dependence of the 
wavenumber k is observed; at least in the applied test.

ENHANCED LOCAL TRUNCATION ERROR

This section presents the results of a couple of tests intended 
to show the order of the local truncation error |ΔH,εopu(x)-Δu(x)| 
and |(∂x)H,εopu(x)-(∂x)u(x)|. In Figure 6 shows the results of testing 
the approximations by comparing with standard FD for u(x)=ℯik-x. 
Whereas in Figure 7 the same is done with u(x)= i--4 H0 

(1)(k|x|). Both 
functions are solutions of the Helmholtz equation, it can be noted 
that in these cases the optimum shape parameter oers an error of 
the order 𝒪 (h4).

RELATIVE PHASE ERROR - POLLUTION EFFECT

As is well known through the vast literature about numerical 
solutions of Helmholtz equation, k is a key parameter. For large 
values of k, the solution u is highly fluctuating. To approximate the 
Helmholtz equation with an acceptable accuracy, the resolution of
the discretization for the domain of interest should be adjusted to 
the wave number according to the so called rule of thumb [17], 

h2
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Figure 5 . Left: Plot of |J(�) = �k(k0; 1--k0; �)| for four different values of k0. Right: Plot of
� = �op(100;h) for four different values of h.

(52)

(53)

(54)

(55)

which prescribes a minimum number of elements per wavelength. 
However, the performance of standard finite difference or finite 
element methods, such as the classical Galerkin finite element 
method, deteriorates as k increases. This misbehavior, known as 
pollution of the approximate solution, can only be avoided, with 
standard methods, after a drastic renement of the discretization. 
[9] summarized the local truncation error | k2

 ,h2
f |/ k2 and the 

relative phase error (kf ,k)| k of the most popular methods for solving 
Helmholtz equation using different size stencils.

Now our aim is to calculate the approximation order of the numerical 
wavenumber �kf as k changes, in order to estimate the order of the 
relative phase error, but first we will examine the order of the error 
| �k2

f -�k2
f | produced by neglecting the dependence of θ in taking the 

average value of �kf  on [0.2�]. We recall that

and

From the Taylor polynomials of (44) and Bessel function respectively

and

thus

From the approximations of F(h,ε) given in (34), it is easy to see that

Hence �k2
f -�k2

f = 𝒪 (h4k6). On the other hand, from (34), (55)

where

Provided that |W| < 1, the binomial series can be applied, that is 
⎷1 −W= 1 − 1--2W +𝒪 (W2). We take the linear approximation, then

(56)

(57)

(58)
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Figure 6 . Left: Comparison of relative local truncation error, varying h, between the approximation using standard FD 7p ΔH,0u(x,y) 
and RBF-FD7p ΔH,0u(x,y). Right: Comparison of relative local truncation error between the approximation using standard FD7p 

(∂x)H,0u(x,y) and RBF-FD7p (∂x)H,0u(x,y). Here u(x,y)=ℯik(z cosθ+y sinθ), is evaluated at (x,y)=(2.15), with θ=�|6 and k=100.

Figure 7 . Left: Comparison of relative local truncation error, varying h, between the approximation using standard FD 7p Δhu(x,y) 
and RBF-FD7p (Δ)H,�u(x,y). Right: Comparison of relative local truncation error between the approximation using standard FD7p 

(∂x)hu(x,y) and RBF-FD7p (∂x)H,�u(x,y). Here u(x,y)= i--4 H0
(1)(k⎷x2+y2), H0

(1) is the Hankel function evaluated at (x, y) = (2, 1:5) and k = 100.
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Figure 8 . Comparison between the function r(θ)= |��k(k0 ,θ,h0 ,�op)|/k2
0 (solid line) where k0 = 100 and h0 =0.01, and the function

 r(θ)=Jᵧ(b0 , d0 , e0;G0 ,θ)/k2
0 (dashed line) where Jᵧ and parameters b0, d0, e0 and G0 were taken from [3]. Left: �op satises �k(100,0.001, 

�op)=0. Right: �op= arg min | ��k(100,π/3,0.01,�)|
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Hence the relative phase error is given by

Note that for the limit case ε →0+

which asserts that, in the limit case, for keeping the order of the 
error when k is increasing, the mesh size h it must scale at least as 
k− 3--2 , that is h = 𝒪 (k− 3--2 ).

3. EXPERIMENTAL 
DEVELOPMENT

Perfectly matched layers (PML) is a technique for simulating 
solutions of wave phenomena in free-space. The idea is to build 
an absorbing layer for surrounding the computational domain of 
interest. The new system possesses the property of generating 
no reflection, at least in continuous case, at the interface between 

the free medium and the articial absorbing medium. PML has been 
introduced by Berenger [1] for Maxwell's equations, and has been 
widely used for the simulation of time dependent seismic waves 
as well as Helmholtz-like equations. The analysis necessary to 
show that the Helmholtz equation with PML (PML-Helmholz) for 
constant wavenumber is a well-posed problem is treated in [20]. 
Now a description of PML-Helmholtz equation is given (see [14], 
[38] for details). 

For setting up the PML-Helmholtz equation it is necessary to 
define some basic functions in a rectangular domain. Let σl ℝ→ℝ 
be defined by

where p (0, 1) → (0, 1) is given by p(t) = 1 − ℯ  t2----t2-1 ,γ and � are constant. 
By definition σ ∈C∞(ℝ). for a fixed positive angular frequency ω 
satisfying 0<  γ--� < ω ,let dl be the complex-valued function

Consider the open rectangles Ω=(-a,a)x(-b,b) and Ω�=(-a-�,a+�)
x(-b-�,b+�).

The modified PML-Laplace operator is defined by

(62)

(63)

(64)
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We use the optimal shape parameter ε given by (51) to approximate 
each operator involved in (68). To analyze the approximation  �ΔH,εu(x) 
applied to problem (66) we regard the concept of consistency [32].

Definition 2. Given a partial differential equation, ℒu = f, and a finite 
difference scheme, ℒhu = f based on a stencil with size h, we say that 
the finite difference scheme is consistent with the partial differential 
equation if for any smooth function 𝜑(x)

as h → 0, the convergence being pointwise convergence at each 
point x. 

Proposition 1. The RBF-FD approximation given in (67) applied to 
the problem (66) is consistent with the Helmholtz-PML equation 
and has second order of accuracy.

Proof. We need to show that for an hexagonal 7−stencil H of size h 
centered at x ∈Ω� and for a given shape parameter ε

converges pointwise to 0 as h → 0, where 𝜑 is a smooth function. The 
proof will be completed by simply inspecting the estimates in (38) 
used in (67), once performed these substitutions we can observe that

which means that the accuracy of the approximation is 𝒪 (ε2h2), as 
εh tends to 0.

DISCRETE FORMULATION

We will perform the discretization of the problem (66) on an 
hexagonal grid G which represents to Ω�. The optimal shape 
parameter at every stencil will be taken in accord to its dependence 
of the local wavenumber k(x) = ω2c−2(x), so εop(x) = εop(k(x),h), where
is used (51). For the sake of a more simplied notation, we denote 
similarly for the others weights formulas in (69).

We begin by considering two rectangular grids given by

where Nz is a positive odd integer. Note that the grid G = G1∪G2 is 
formed by hexagonal stencils. We denote x1

mn = (mh,n⎷3h) and x2
mn 

= ((m- 1--2 )h,(n+ 1--2)⎷3h) for points in G1 and G2 respectively; also we 
denote uj

mn = u(x j
mn) for x j

mn ∈ Gj, j = 1, 2. The homogeneous Dirichlet 
boundary condition it is expressed in terms of the boundary points 
of the grid G, by doing

or alternatively

where sa= 1--da and sb= 1--db. Note that - �Δ coincides with -Δ in Ω. Usually, 
for making analytic studies this is considered as an unbounded 
operator on L2(ℝ2) with domain the Sobolev space H2(ℝ2) or in a 
weaker form, as an unbounded operator on H-1(ℝ2) with domain 
H1(ℝ2) [38]. However, for numerical implementations in the finite 
difference approach it is considered a truncated version - �Δ : C2(Ω�)→ 
C0(Ω�).  The PML-Laplace operator allows to introduce the PML-
Helmholtz equation

we will suppose that the function c = c(x) which describe the acoustic 
or P-wave propagation speed is positive and belongs to C2(Ω�).

In order to approximate solutions of equation (66) within the 
approach of RBF-FD on hexagonal grid, we use the explicit 
expressions for Gaussian weights, thus by way of the formulas in 
(33) we have that for x = (x, y) in Ω� with 7-stencil H ⊂ Ω�

hence by carrying out substitutions

where weights Γ's are given by

and of course,

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)
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Thus, for points in the grid G1, the equation (68) has the explicit form

for m = 1,...,Nx − 2, n = 1, ... , Nz−3----2  , and for points at grid G2 is

for m = 1,...,Nx − 1, n = 0, ... , Nz−3----2  . With the couple of equations above 
we assemble a sparse linear system (- �Δh-ω2c-2)Uh=f where c is a 
diagonal matrix formed with the values c j

mn = c(x j
mn),

is a block matrix whose blocks are given by

(77)

x 1
m,n +1

x 2
m− 1,n x 2

mn

x 1
m− 1,n

x 2
m+1 ,n

x 1
mn x 1

m+1 ,n

x 2
m,n − 1 x 2

m+1 ,n − 1

x 1
m− 1,n +1

Figure 9 . Hexagonal grid G = G1 ∪G2, where G1 are black dots 
and G2 are blue squares.
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Figure 10. Plot of some eigenvalues of the matrices - �Δh and -c2 �Δh 

(Top) for ω = 10 and h= 0.1497, (below) ω = 50 and h = 0.0300. c 
represents the Marmousi model extended to PML.

EXACT IMPEDANCE BOUNDARY CONDITIONS

PLANE WAVES
With Ω = (0,1) × (0,1), k = 500, kx = k cos θ, kz = k sin θ . By using 2�  
points per wavelength, i.e. kh = 1, we solve (91)

with g given by g(x, z)

4. RESULTS

(91)
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The sparsity pattern of the matrix  �Δh is depicted in Figure 11.

Remark 3. If Lh=(- �Δh - ω2c-2),  the linear system LhUh =f can be solved if 
only if ω2 ∉ ∑(-c2 �Δh). Here ∑ (A) denotes the spectrum of A. Is pending 
for a further work to prove that ω2 ∉ ∑(-c2 �Δh). Figure 10 shows a 
plot of some eigenvalues of the matrices - �Δh and -c2 �Δh , where c 
represents the Marmousi model extended to PML. The eigenvalues
plotted are 500 nearest to ω2 and 500 nearest to 0.
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Figure 11. Sparsity pattern of the matrix �Δh

The results can be seen in Figure13.

SPHERICAL WAVEFRONT
For this example it is chosen Ng = 6 for solving the problem (91) with  
 Ω = (0, 1)×(0, 1). Where g is the boundary data satisfying the exact 
solutions

and

with constant k. These solutions corresponds to a single source and 
four sources, respectively, outside the domain Ω. The relevancy of 
taking u2 can be seen in [13]. Discretizations were made with Ng = 
6 nodes per wavelength at each value of the wavenumber k. Within 
an hexagonal grid we take 7−stencils at inner nodes and 22−stencils 
at boundary nodes.

(92)

(93)

(94)

k
2π~h
N
Nnh

Nb

||uc-uc||L2
||uc-uc||L2/||uc||L2
||uc-uc||L2
||uc-uc||L2/||uc||L2

50
30

2691
608
206

1.28e-03
1.78e-02
7.27e-03
2.09e-02

100
600

10604
1379
412

9.84e-04
1.91e-02
7.15e-03
2.04e-02

200
1200

42214
3441
822

8.15e-04
2.24e-02
7.41e-03
2.11e-02

400
2400

168847
5460
1646

6.11e-04
2.38e-02
6.07e-03
1.73e-02

800
4200

674614
10106
3290

6.11e-04
3.36e-02
6.40e-03
1.82e-02

Table 1. Error of the approximated solutions �u1 and �u2 for the 
problem (91) with source outside the domain, whose exact 

solution u1 and u2 are given in (92) and (93).

INSIDE SOURCE PROBLEM

Now we test our method with sources inside the domain. The aim is 
to get the truncated solution of the problem

Figure 12. Nodes distribution of hexagonal type.

WITH PML
In this test we solve the problem of nd the truncated Green's function 
for - �Δh − k2 in Ω= (0, 1) × (0, 1), that is the solution of

(95)

Table 2. Error of the approximated solutions �u1 and �u2 for the 
problem (91) with source f inside the domain, g = 0 and ℬ the 

third order Pade approximation. Exact solutions uc and uM

are given in (94) and (95).

k
2π~h
N
Nnh

Nb

||uc-uc||L2
||uc-uc||L2/||uc||L2
||uM-uM||L2
||uM-uM||L2/||uM||L2

50
30

2691
608
206

3.13e-03
6.45e-02
4.15e-03
6.54e-02

100
600

10604
1379
412

1.69e-03
4.91e-02
2.72e-03
6.10e-02

200
1200

42214
3441
822

1.97e-03
8.00e-02
2.38e-03
6.83e-02

400
2400

168847
5460
1646

1.27e-03
7.28e-02
1.73e-03
7.39e-02

800
4200

674614
10106
3290

8.70e-04
7.03e-02
1.27e-03
7.34e-02
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The solution of this problem is

Figure 13. Comparison of results between RBF-FD and those 
reported in [3]. (a) Results for k = 500 and h = 1/500 varying the 
propagation angle. (b) With k varying, θ=π/4 and h=1/k

Figure 14. Plot of tests for approximated solutions of (91). 
(a) Comparison with the exact solution (92). (b) Comparison 

with the exact solution (93).
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where H0
(1) is the Hankel function. For this test we use 2� points per 

wavelength (i.e. kh = 1). Some results with a qualitative analysis of 
error are shown in Figure 15.

2004 BP MODEL

In this example we calculate the truncated Green function for the 
well known BP model in frequencies 15Hz and 40Hz. The results 
are shown in Figure 16.
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Figure 15. (Left) Runtime for solving the system LhUh = f by LU factorization. (Center) Near boundary sources. (Right) Centered 
sources.
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Figure 16. Top: 2004 BP velocity-analysis Benchmark. Bottom plots: Real part of the wave
eld at 6Hz with dierent positions of the source.
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