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In this work, the conventional cartesian straight-line pseudosteady-state solution and the Total Dissolved 
Solids (TDS) solution to estimate reservoir drainage area is applied to constant-pressure reservoirs to 
observe its accuracy. It was found that it performs very poorly in such systems, especially in those having 

rectangular shape. On the other hand, the pseudosteady-state solution of the TDS technique performs better 
in constant-pressure systems and may be applied only to regular square- or circular-shaped reservoirs with a 
resulting small deviation error. Therefore, new solutions for steady-state systems in circular, square and rect-
angular reservoir geometries having one or two constant-pressure boundaries are developed, compared and 
successfully verified with synthetic and real field cases. Automatic matching performed by commercial software 
sometimes are so time consuming and tedious which leads to another reason to use the proposed equations.
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En este trabajo se aplica la solución convencional de análisis cartesiano para estimar el área de 
drenaje en yacimientos con fronteras a presión constante para verificar su exactitud. Se encontró 
que esta produce resultados muy pobres, especialmente en yacimientos con geometría rectangular. 

Por otro lado, la solución de estado pseudoestable de la técnica TDS trabaja mejor en sistemas a presión 
constante y se podría aplicar con un pequeño margen de error en sistemas regulares con geometría circular 
o cuadrada. Por tanto, se desarrollaron nuevas soluciones para sistemas en estado estable con geometría 
circular, cuadrada y rectangular que tienen una o más fronteras de presión constante. Estas se compararon y 
se probaron exitosamente en casos simulados y de campo. El ajuste automático efectuado por los paquetes 
comerciales algunas veces consumen mucho tiempo y son tediosos. Esto proporciona otra razón para usar 
las ecuaciones aquí propuestas.

Palabras clave: yacimientos, presión, pruebas de presión, área de drenaje del yacimiento, estado pseudoestable, 
técnica TDS.
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INTRODUCTION

The first solution for the estimation of the reservoir 
drainage area was presented by Ramey & Cobb (1971) 
from the pseudosteady-state pressure solution case. The 
late-time pressure data during the pseudosteady-state 
period behave linearly with flowing pressure and, there-
fore, its slope leads to the estimation of the drainage area. 
Later on Tiab (1994), introduced a more practical and 
easy-to-use solution which uses the point of intersection 
between the late-time pseudosteady-state period with 
the extrapolation of the horizontal radial flow regime 
straight line as part of the TDS technique, Tiab (1993). 
This solution works perfectly in either circular, square or 
rectangular closed systems, but it fails to provide accurate 
results constant-pressure systems having a rectangular or 
elongated geometry, therefore, its application as currently 
done so far leads to severe mistakes in the estimation of 
the reservoir drainage area. Another solution presented 
by Chacón, Djebrouni, & Tiab (2004) uses any arbitrary 
time and pressure derivative point read during the late-
time pseudosteady state period to easily and exactly 
provide an estimation of reservoir drainage area in closed 
systems. A great advantage of this solution is the fact 
that it does not involve the reservoir permeability in the 
calculations and can be usefully used whenever the radial 
flow data is highly noisy. However, care should be taken 
in designing and running the test long enough so the late-
time pseudostate/steady state period is well developed. 

MATHEMATICAL BACKGROUND

The dimensionless quantities used in this work are:
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The general pseudosteady-state equation was pro-
posed by Ramey & Cobb (1971) as:
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From this, the cartesian slope during the late pseu-
dosteady-state period was defined as:
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Which implies that the reservoir drainage area can be 
estimated from the slope of a cartesian plot of pressure 
versus time during late-time pseudosteady-state period.

Following the philosophy of the Tiab’s	Direct	Syn-
thesis	Technique Tiab (1994), developed an equation to 
estimate reservoir area using the intercept of the pres-
sure derivative of Equation	6 with the derivative during 
infinite-acting radial-flow  regime, (tD*PD’	=	0,5):
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Also, reservoir drainage area can be estimated 
using any arbitrary point on the pressure derivative 
curve during the late-time pseudosteady-state period, 
tpss and (t*∆P’)Pss, Chacon et	al. (2004):
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For steady-state cases, the slope of the Cartesian 
plot of pressure versus time may be used so Equation 
7 can be applied. On the other hand, Equations 8 and 
9 may also be used if a negative unit slope is drawn 
tangentially to the pressure derivative curve during the 
steady-state period; then, the intercept with this line 
with the straight line of the radial-flow regime or a point 
touched by the tangential line are, respectively, used 
in the mentioned equations. We should be aware that 
pressure and pressure derivative behaves differently 
for constant-pressure case systems; then, application 
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Suffix ssri stands for the intersection between 
the negative unit-slope line drawn tangentially to 
the pressure derivative curve with the radial line. It 
should be clarified that Equation 8 applies to any 
closed reservoir geometry, but Equation 12 only ap-
plies to either circular or square shape drainage area 
as indicated in Table 1.

Rectangular systems
Equations	7 to 9 work well for alongated closed 

systems but do not apply to long reservoirs with either 
one or both extreme boundaries subjected to constant-
pressure conditions. The reservoir configuration is 
given in Figure 1. For such systems the governing 
equation depends upon several conditions: 

of the above equations should lead to unaccuarate area 
estimations. Therefore, the following section deals with 
this situation in order to overcome the problem.  

Square or Circular Reservoirs 
The negative unit-slope straight-line tangential to the 

pressure derivative curve during the steady-state period 
(Figure 2) is given by the following approximation:
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During the infinite-acting radial-flow regime, the 
dimensionless pressure derivative is governed by:
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An equation for the drainage area is obtained from 
the intersection of the steady-state and the radial- flow 
regime lines. After plugging the dimensionless time 
quantity in the resulting equation will provide:
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Figure 1. Reservoir configuration

YE

Lateral boundaries

bx

by

XE

Table 1. Summary of equations

Constant, Ξ Equation Reservoir Geometries

301,77

 283,66

4066

482,84

7584,2

2173,52

 6828,34

41,82

 20,91
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Figure 5. Dimensionless pressure derivative behavior when a well is far 
from a constant-pressure boundary

Figure 2. Dimensionless pressure derivative behavior for a well inside a 
constant-pressure circular/square area 

Figure 3. Dimensionless pressure derivative behavior for a well 
centered inside no-flow and constant-pressure boundaries

Figure 4. Dimensionless pressure derivative behavior when a well is 
near a constant-pressure boundary
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far boundary (Figure 5)

Well Centered
The governing equation of the negative-unit slope 

tangential to the pressure derivative curve for a well 
centered inside a rectangular reservoir with one 
constant-pressure boundary (Figure 3) is given here as:
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The equation for drainage area is derived from ma-
nipulation of Equations	11 and 13, assuming A=XEYE 
and replacing the dimensionless expressions, Equations	
2 to 4, in the resulting equation, to yield:
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When both lateral boundaries are subjected to con-
stant pressure, the governing equation of the negative-
unit slope tangential to the pressure derivative curve, 
Figure 3, is given as:
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And the reservoir drainage area is found from the 
intercept of the above equation with Equation	11 as 
described above, then: 
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The maximum point for the case of one constant-
pressure boundary is governed by the following ex-
pression:
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And for the case of both constant-pressure bound-
aries:
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Expressions for determination of the reservoir length 
and area, assuming A=XEYE, is found from Equations	
17 and 18, respectively:
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Well off-Centered
Escobar, F. H., & Montealegre, M. (2007) pre-

sented the governing equation for the unit-slope line 
drawn tangentially to the pressure derivative curve for 
constant-pressure lateral boundaries, (Figure 4):

 
 

32
1.5 1* ' D E

D D D D
E

W Xt P X t
Yπ

−  
   
    	 (21)

The equation for drainage area is derived from ma-
nipulation of Equations	11 and 21, assuming A=XEYE	
and replacing the dimensionless expressions, Equations	
2-4, in the resulting equation, then:
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For the mixed boundary case (Figure 4) the governing 
equation was also presented by Escobar, Hernández & 
Hernández (2007) as:
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By the same token:
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When dual-linear and linear flow regimes are exhibited,  
(Figure 5), then the governing equation is:
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Which leads to the following equation for estimation 
of the reservoir drainage area:
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The maximum point in Figure 5 is governed by the 
following expression presented by Escobar et	al. (2007).
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From which the following expression area obtained:
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bx and YE in Equations	22 and 24 can be obtained 
from the equation presented by Escobar et	al. (2007) 
using the TDS technique:
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Or from the conventional straight-line method, Es-
cobar & Montealegre (2007): 
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The just mentioned references contain some other 
expression to estimate well position and reservoir width 
along with the estimation of the geometric skin factors. 

A practical summary of the drainage area equations 
is provided in Table 1.

EXAMPLES

Synthetic Example 1
A drawdown test was generated for a circular 

(re=1000 ft) constant-pressure reservoir with the 
information given in Table 1. Figure 6 contains the 
pressure and pressure derivative data for this synthetic 
test. Find reservoir drainage area.

Solution. For this reservoir, the drainage area is 
(x10002) = 3 141 593  ft2. From Figure 6, the intercept, 
tssri, of the minus-one slope straight with the radial flow 
regime line takes place at 43,6 hr. Using this value in 
Equation	12 the obtained area is 3 074 103 ft2 which is 
a reasonable value for this case. Other estimations are 
reported in Table 3, including that from Equation	7. 
For this case, the cartesian slope was found using the 
latest points in the test.

Synthetic Example 2
Figure 7 shows the pressure and pressure derivative 

plot for a well centered inside a rectangular reservoir 
with a no-flow lateral boundary and a constant-pressure 
boundary. Data used for the simulation are given in the 
Table 2. Find reservoir drainage area.

Solution. From Figure 7, tssri = 29,957 hr. The re-
sulting area value from Equation	14 along with others 
is reported in Table 2.

Figure 6. Pressure and pressure derivative plot for synthetic example 1
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Synthetic Example 3
Figure 7 also shows the pressure and pressure de-

rivative plot for a well centered inside a rectangular 
reservoir with constant-pressure lateral boundaries. 
This simulation was attained using data from the third 
column of Table 2. Find reservoir drainage area.

Solution. From Figure 7, tssri = 3,792 hr and the maxi-
mum point, tx = 501 hr. The results from Equations	16 
and 20b are reported in Table 3, along with some others.
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Synthetic Example 4
A drawdown test was generated for a well centered 

inside a rectangular-shaped reservoir with one constant-
pressure boundary and one no-flow boundary, using 
the information given in Table 1. Figure 8 contains the 
pressure and pressure derivative data for this synthetic 
test. Find reservoir drainage area.

Solution. From Figure 8, tss2ri = 5,600 hr and tx = 
2001 hr. The results from Equations	24,	19b,	7 and 8 
are also reported in Table 3.

Table 2. Data for simulated and field examples

Synthetic examples Field examples

Parameter 1 2, 3,4  5, 6 1 2 3

k, md 100 100 100 440,7 252,1 6,74

rw, ft 0,3 0,3 0,3 0,51 0,3541 0,359

h, ft 100 100 100 14 40 22

, % 10 10 10 24 20 13

B, rb/STB 1,25 1,25 1,25 1,07 1,04 1,22

, cp 5 5 5 3,5 5 1,137

ct, 1/psi 1x10-5 1x10-5 1x10-5 9x10-6 7,6x10-6 9,84x10-6

q, BPD 500 500 500 1400 150 123

YE, ft 800 800 360 360

XE, ft 5000 5000 1318 1318

bx, ft 1000 286 286

Table 1. The pressure and pressure derivative plot is 
given in Figure 8. Find reservoir drainage area.

Solution. From Figure 8, tss1ri = 1,360 hr. The 
result from Equation	22 along with others is reported 
in Table 3.

Synthetic Example 6
A simulation with the information from Table 1 was 

run for a well inside a long reservoir, near a no-flow 
boundary and far from the contant-pressure boundary 
is presented in Figure 9. Find reservoir drainage area.

Solution. Since the well is off-centered in a rectangu-
lar reservoir and the open boundary is far from the well, 
then, both dual-linear and single-linear flow regimes 
are observed. From Figure 9, tssri	= 54 000 hr, then the 

Figure 9. Pressure and pressure derivative plot for synthetic example 6

Figure 8. Pressure and pressure derivative plot for synthetic examples 
4 and 5
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Synthetic Example 5
Contrary to Example 4, in this example the reservoir 

has both contant-pressure lateral boundaries. Needless 
to say that the simulation was performed with data from 



59

DETERMINATION OF RESERVOIR DRAINAGE AREA FOR CONSTANT-PRESSURE SYSTEMS

CT&F - Ciencia, Tecnología y Futuro  -  Vol. 4  Núm. 1      Jun. 2010

from a commercial software since it was not practical 
to obtained an acceptable match for this test.

Field Example 2
Figure 11 presents the pressure and pressure deriva-

tive plot for a test run in a well in the Colombian Eastern 
Planes basin. The well-flowing pressure for this test is 
1527,36	psi. Other information pertienent to this pressure 
tests is given in Table 2. Find reservoir drainage area.

Solution. From Figure 11, tssri = 3,5 hr is used in 
Equation	12 to provide an area of 335 164 ft2 and 314 984 
ft2 from Equation	8. The reservoir geometry looks to be 
slightly rectangular (although a faulted reservoir may be 
considered). For this test was difficult to obtain a reason-

reservoir drainage area estimated from Equation	26 is 
3 878 150 ft2. Other results are provided in Table 3.

Field Example 1
Escobar et	al. (2007) reported a drawdown test run in 

a channelized reservoir in the Colombian Eastern Planes 
basin. Reservoir and well parameters are given in Table 
2. Dimension parameters in Table 2 were obtained from 
the reference. The initial pressure is 1326,28 psi and the 
pressure and pressure derivative data are reported in 
Figure 11. Estimate reservoir drainage area.

Solution. From Figure 10, tssri = 24 hr. A reservoir 
drainage area of 474 880,2 ft2 was obtained from Equa-
tion	22. A reservoir width of 355 ft was also obtained 

Table 3. Comparative drainage area estimation for the synthetic examples

Example Eq, No. A, ft2 Absolute Error, % m*, psi/hr

1

Actual 3 141 593

12 3 074 103 2,15

8 2 889 618 8,02

7 91 961 478 2827,3 -0,0159

2

Actual 4 000 000

14 3 922 597 1,94

8 1985,42x106 49 535,5

7 221,55x106 5438,8 -0,0066

3

Actual 4 000 000

16 4 069 901 1,75

7 251,32x106 6,183 -1

8 1 462 188 63,5

20.b 3 829 745 4,25

4

Actual 4 000 000

24 3 717 096 7,1

8 90,14x106 2153,5

7 10 260,97x106 256 424,3 -0,000143

19.b 3 826 877 4,32

5

22 4 450 600 11,3

8 371,15x106 9178,8

7 1313,1x106 32 727,5 -0,00111

6

Actual 4 000 000

26 3 878 150 3,05

8 3578,9x106 83 372,5

7 140,4x106 3410,1 -0,0104
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Figure 11. Pressure and pressure derivative plot for field example 2
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ley basin in Colombia are reported in Figure 12. The 
well-flowing pressure for this well is 429,08 psi. Other 
important data related to this test is given in Table 2. 
Find reservoir drainage area.

Solution. A value of tssri of 9 hr is read from Figure 
12 and used in Equation	12 to estimate an area of 147 030 
ft2. The best match obtained for this test was for a circular 
reservoir model with a radius of 210 ft. This gives an 
area of 136 544 ft2 using a commercial simulation which 
closely agrees with the equation proposed here.

ANALYSIS OF RESULTS

From the worked examples, especially the simulated 
ones, is oberved that the late-time pseudosteady-state 
equation for conventional cartesian analysis performs 
poorly for rectangular- shaped reservoirs having one 
or both lateral boundaries subject to constant pressure. 
The TDS technique solution for pseudosteady-state 
provide approximated area estimations in circular/
square constant-pressure reservoirs.

In the worst case, the introduced equations provided 
an absolute error of 11,3% in the estimation of the 
reservoir area. However, care should be taken in the 
selection of the appropriate equation which are easily 
summarized in Table 1. Of course, the proposed equa-
tions which are based upon the TDS technique are de-
pendant on the quality of the pressure derivative curve.

CONCLUSIONS

• New equations for estimating reservoir drainage area 
in steady-state systems have been presented and suc-
cessfully tested with synthetic and field examples. 
It was found that the pseudosteady-state cartesian 
solution fails to provide accurate results of the reser-
voir drainage area, especially in rectangular-shaped 
reservoirs. The pseudosteady-state solution of the 
TDS technique performs better and may be applied 
in either square- or circular-shaped reservoirs.
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Field Example 3
Pressure and pressure derivative from a DST data 

run in a well located in the High Magdalena River Val-
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NOMENCLATURE

A	 Area, ft2

B Oil formation factor, bbl/STB
bx Distance from well the to the near lateral boundary in the x-axis, ft
by Distance from well the to the near boundary in the y-axis, ft
CA Shape factor
ct Compressibility, 1/psi
h	 Formation thickness, ft
k Permeability, md
m Slope
m* Conventional cartesian slope
P Pressure, psi
PD Dimensionless pressure
Pi	 Initial reservoir pressure, psia
Pwf Well flowing pressure, psi
q	 Flow rate, bbl/D
re	 Drainage radius, ft
rw Well radius, ft
t Time, hr
tD Dimensionless time based on well radius
tDA Dimensionless time based on reservoir drainage area
tD*PD’	 Dimensionless pressure derivative
XE Reservoir length, ft
XD Dimensionless reservoir length
YE Reservoir width, ft
YD Dimensionless reservoir width
WD Dimensionless reservoir width
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 Change, drop
t Flow time, hr
ø Porosity, fraction
	 Viscosity, cp

D Dimensionless
DLF Dual-linear flow
i Intersection or initial conditions 
L Linear
PB Parabolic
pss Pseudosteady
psi Pounds per Square Inch
SS Steady
DLPSSi Intersection of pseudosteady-state line with dual- linear line
LPSSi Intersection of pseudosteady-state line with lineal line
rpssi Intersection of pseudosteady-state line with radial line
RDLi Intersection of radial line with dual lineal line
RLi Intersection of radial line with lineal line
RPBi Intersection of radial line with with the parabolic flow line
ss1ri Intersection between the radial line and the -1-slope line 
ss2ri Intersection of radial line with -1-slope line (SS2)
ssri Intersection of radial line with -1-slope line (SS2)
r radial flow
w Well
x Maximum point (peak) after dual linear flow is vanished and steady 

state begins

SUFFICES

GREEK


