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In this paper a comparison is made between the performance of models developed by applying chemometric 
analysis to NIR and UVVIS spectral data obtained from feedsctock samples corresponding to the differ-
ent Ecopetrol S.A., Barrancabermeja Refinery FCC units for predicting some important physicochemical 

properties.  The results show the utility of both methodologies here evaluated to follow up the quality of these 
types of refinery streams and present the advantages and disadvantages of each methodology for predicting 
the feedstock properties here evaluated.
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En este artículo se hace una comparación entre el desempeño de modelos desarrollados aplicando 
el análisis quimiométrico a la información espectral en la región del infrarojo cercano (NIR) y en el 
ultravioleta visible (UVVIS) para predecir algunas de las más importantes propiedades fisicoquímicas 

de las cargas al proceso de ruptura catalítica. Las muestras utilizadas se obtuvieron directamente de las 
diferentes unidades de ruptura catalítica en lecho fluidizado (FCC) que posee Ecopetrol S.A., en su refinería 
de Barrancabermeja. Los resultados muestran la utilidad de las dos metodologías aquí evaluadas para hacer 
un seguimiento a la calidad de estos tipos de corrientes de refinería y presenta las ventajas y desventajas de 
cada metodología para predecir las propiedades fisicoquímicas aquí evaluadas.

Palabras clave: Quimiometría, carga, infrarojo cercano, espectrofortometría ultravioleta visible.
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INTRODUCTION

The development of faster analytical techniques for 
quality control of process and products has become 
very important in the petrochemical industry because, 
generally, the routine analyses are time consuming and 
require special conditions for their application. In recent 
years Nir spectrophotometry, combined with multivariate 
calibration techniques, has been used as a tool to predict 
simultaneously several chemical and physical proper-
ties in crude oil (Falla, Larini, Le Roux, Quina, Moro & 
Nascimento, 2006) and the different derived products 
such as gasoline (Bohács, Ovádi, & Salgó, 1998), diesel 
(Breitkreitz, Raimundo, Rohwedder, Pasquini, Dantas, 
Joséb & Araújo, 2003), kerosene (Chung, Ku & Lee, 
1999) and other products. The development of optical 
fiber working in NIR range makes it possible to derive 
on line applications for identifying petroleum products 
(Chung, Choi & Ku, 1999), controlling distillation pro-
cesses (Pasquini & Scali, 2003) and catalytic reforming 
units (Xiaoli, Hongfu & Wanzhen, 2005). NIR on line 
applications for light and middle petroleum products 
(Zanier-Szydlowski, Quignard, Baco, Biguerd, Carpot 
& Wahl, 1999) do not require sample preparation and 
are easily developed, but a sample pretreatment to 
the working conditions of the spectrophotometer is a 
required step (filtering and temperature conditioning). 
For heavier samples like FCC feedstocks, it is often 
difficult to develop on line applications due to the viscos-
ity of these highly colored samples which contaminate 
the sample cells and the sample pretreatment systems. 
Nuclear magnetic resonance NMR is another technology 
that competes with NIR for online applications (Gilbert, 
Bueno & Lima, 2003).

On the other hand, UV spectroscopy has been used 
for hydrocarbons type estimation in light gas oils and 
diesel fuels (Wentzell, Andrews, Walls, Cooley & Spen-
cer, 1999), for monitoring the naphthalene content in 
jet fuel (ASTM D 1840, 2007), for complex aromatic 
systems characterization (Loppnow, Shoute, Schmidt, 
Savage, Hall & Bulmer, 2004), for crude oil classifica-
tion and evaluation (Evdokimov & Losev, 2007) and 
to analyze and predict chemical composition of FCC 
feedstocks (Baldrich & Novoa, 2007). Unfortunately, 
this technology could not be applied for on line moni-
toring because of the sample preparation requirements.

Operational analysis of FCC industrial units requires 
knowing at least the following variables of the feed-
stocks: microcarbon residue for the heat balance, nickel 
and vanadium content for defining the catalyst addition 
rate to the unit, basic nitrogen for estimating the partial 
deactivation of the catalyst and sulphur content to esti-
mate the amount of sulfur in the regenerating flue gas.

Most of the analytical tests for characterization of FCC 
feedstocks are performed at the laboratory scale using stan-
dard test methods that are time consuming. It is necessary 
to determine these properties more quickly for improving 
refinery  operations. This requirement has stimulated the 
development of alternative methods that allow obtaining 
this information more quickly. NIR spectrometry has been 
considered here as an alternative because it meets these 
needs and requires no sample pretreatment.

Authors of this paper have been working with UV-
VIS spectrophotometry to obtain some of the chemical 
properties of this type of sample but up to this time no 
models for predicting the above mentioned properties 
have yet been developed. 

In this work UVVIS spectrophotometry is used to 
predict properties required for routine analysis of FCC 
feedstocks and we compare this technique with the 
results from NIR spectrophotometry.  

EXPERIMENTAL SECTION

This study includes 89 samples obtained directly 
from the ECOPETROL S.A. Refinery located at Bar-
rancabermeja where there are 4 different fluid catalytic 
cracking (FCC) units. One of them is a MODEL IV 
which processes a mixture of gas oils and a paraffinic 
reduced crude oil. Another one is the ORTHOFLOW 
FCC unit whose feedstock is a mixture of vacuum 
gas oils and demetallized oil (DMO) obtained by an 
extraction process with light solvents (propane and 
butanes) of vacuum tower bottoms as feedstock. There 
is also one UOP 1 FCC unit which processes a blend 
of vacuum gas oil, paraffinic reduced crude oil, hy-
drotreated demetallized oil (DMOH), and visbreaking 
nafta as feedstock. The last one is UOP2 FCC unit 
which processes paraffinic reduced crude oil, DMOH 
and vacuum gas oil. Table 1 summarizes some statisti-
cal parameters of physicochemical properties (sulphur, 
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density, API gravity, basic nitrogen, microcarbon resid, 
nickel and vanadium) of the samples used in this re-
search, determined by using standard test procedures.

NIR spectrums were collected over the 3600 to 8000 
cm-1 spectral region with an ABB FTLA2000-154 NIR 
spectrophotometer equipped with a CSi source and a 
Deuterated triglycine sulfate (DTGS) detector. Each NIR 
spectrum corresponded to an accumulation of 32 scans 
with a 4 cm-1 resolution and using an optical path length 
of 0,5 mm. For NIR analysis, there was no any sampling 
preparation step. The temperature of the measurement cell 
was maintained at 40°C during the experiments. The UV-
VIS spectrum was obtained in a HP8453 spectrophotom-
eter with a diode arrangement detector. Spectrums were 
obtained over solutions of the samples in cyclohexane 
spectroscopic grade. The thickness of the used sample 
cells were 1mm or 2mm. All the spectra were normalized 
taking into account the mass of the analyzed sample and 
the cell thickness (Baldrich, 2008).

The normalized UVVIS and NIR spectra and the 
properties of different samples were input to the Un-
scrambler v.9.7. Partial least squares regression (PLSR) 
was used as the technique for generating all the predic-
tive models, and principal components analysis (PCA) 
was performed to determine the discrimination power 
of NIR and UVVIS techniques.

RESULTS AND DISCUSION

Figures 1 to 4 present the statistical analysis of all 
the measured properties for all of the sample groups. 
The graphs show the lower and higher limit for each 
property. The lower limit of the box corresponds to the 

Table 1. Physicochemical characterization of FCC feedstocks

PROPERTY METHOD MINIMUN MAXIMUN AVERAGE
STANDARD 
DEVIATION

SULPHUR (%wt) ASTM D4294 0,696 1,213 0,884 0,134

DENSITY (15,6°C) (kg.l-1) ASTM D5002 0,9169 0,9403 0,9300 0,0050

BASIC NITROGEN (%wt) UOP 269 0,0450 0,0750 0,0622 0,0091

MICROCARBON RESIDUE (%wt) ASTM D4530 0,330 2,380 1,542 0,661

NICKEL (PPM wt) ASTM D 5863 0,59 6,51 3,22 1,59

VANADIUM (PPM wt) ASTM D 5863 1,11 9,13 4,57 1,86

highest property values for 25% of the samples and the 
higher limit is the maximum property value for 75% 
of the samples. The central line is the average value 
for each property.

It can be seen on these graphs that the model IV 
samples have the lowest contents of microcarbon 
residue and metals (Ni and V). Orthoflow samples are 
characterized by the highest content of metals. The 
content of metals of UOP 1 samples is lower than those 
of orthoflow samples. UOP 2 samples have a lower 
concentration of metals than UOP 1 samples.

Statistical analysis indicates that Model IV samples 
have the lowest content of basic nitrogen. UOP 1, Or-
thoflow and UOP 2 samples have similar concentration 
of basic nitrogen.

Analytical results were inspected to evaluate the 
general consistency of the data. The interdependence 
between properties was determined. The only one found 
was that between Nickel and vanadium content. Figure 
5 shows the correlation between these two variables. 
One of the samples was an outlier and was not taken 
into account in developing the prediction models for 
the content of metals.

Histograms for the different properties for all of 
sample were plotted to assess the data consistency. 
Extreme samples that were different from the average 
were neglected in the development of the models. 

Figures 6 to 13 are examples of these type of graphs 
used for data consistency analysis. For example in Fig-
ure 6, 2 samples with vanadium content lower from the 
average of the Orthoflow samples were neglected in the 
development of vanadium predicting model. In a similar 
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Figure 1. Summary of statistical analysis of Model IV feedstock samples 
properties

Figure 2. Summary of statistical analysis of Orthoflow feedstock 
samples properties

Figure 3. Summary of statistical analysis of UOP 1 feedstock samples 
properties

Figure 5. Lineal relationship between Nickel and Vanadium content in 
the evaluated samples

Figure 6. Histogram of vanadium content for orthoflow samples

Figure 4. Summary of statistical analysis of UOP 2 feedstock samples 
properties

way, in Figure 7 one UOP 1 sample with a very high con-
tent of vanadium was neglected in the model. This sample 
corresponds to the one observed as outlier in Figure 5. 

Based on Figure 8, one of the Model IV samples 
was rejected for developing the model for predicting 
nickel content. Three more samples were rejected 
for developing this model from results presented on 
Figures 9 and 10.
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Based on Figure 11 one sample was removed for 
developing and testing the Sulphur content models. 
Taking into account the results presented in Figure 12 
one sample was removed for developing and testing 
basic nitrogen predictive models. 

Finally, based on Figure 13 results one sample was 
removed for developing and testing density predictive 
models.
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Figure 7. Histogram of vanadium content for UOP1 samples
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Figure 8. Histogram of nickel content in Model IV samples
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Figure 9. Histogram of nickel content in Orthoflow samples
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Figure 10. Histogram of nickel content in UOP 2 samples
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Figure 11. Histogram of sulphur content in Orthoflow samples
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Figure 12. Histogram of basic nitrogen in UOP 1 samples
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Figure 13. Histogram of density in Model IV samples
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 Figures 14 and 15 show the NIR and UVVIS spec-
tra of the samples used in this research. According to 
these graphs UVVIS spectra show more leverage than 
does NIR spectra.

 In NIR spectra bands related to combination and 
overtones of C-H bonds in the different compounds (par-
affins, cycloparaffins, aromatics and resins) are observed.

 The bands observed in UVVIS spectra are related 
to different aromatic compounds (mono, di, tri, tetra 
and more complex aromatics) present in the samples.
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Figure 14. NIR spectra of FCC feedstocks Figure 15. UVVIS spectra of FCC feedstocks

Figure 16. Score plot of PCA of UVVIS spectral data of FCC feedstocks Figure 17. Score Plot of PCA of NIR spectral data of FCC feedstocks

Principal component analysis was performed from 
the whole UVVIS spectra and from the region 3983 to 
4412 cm-1 of the NIR spectra. The score plots obtained 
by this technique are shown in Figures 16 and 17 for 
UVVIS spectral data and NIR spectral data respectively.

Inspection of these figures shows better discrimi-
nation between the lighter feedstocks (model IV) and 
the others by Uvvis spectrophotometry. In Figure 
16, Model IV samples, appears as a separated cluster 
whilst in Figure 17 they appear together with orthoflow 
samples. Four clusters appear in this figure indicating 
an important mixing of samples in the different clusters. 
For example orthoflow samples appeared in two clus-
ters together with Model IV samples in one of them and 
with UOP1 samples in the other. Two separated clusters 
also appear in this figure which contains samples of 
UOP1 and UOP2 feedstocks. 

For the development and testing of the predictive 
models, samples were arranged in two sets: the cali-

bration and validation data sets the first one with 45 
samples and the second one with 44 samples. Both 
of the signals (NIR and UVVIS) were correlated with 
the properties of the feedstocks using the Unscrambler 
software v.9.7. Models were developed by PLS using 
the options cross validation and center data. All the 
available samples were sorted in ascending order by 
microcarbon residue content using the Unscrambler 
software. Samples with odd number in this arrangement 
were selected for the calibration data set and samples 
with even number were used for the validation data set. 

All the statistical results that indicate the perfor-
mance of the different models are presented in Table 2 
which shows the square of correlation coefficient for 
calibration and prediction, the number of components 
required to explain the data variance, the Root mean 
Square error of calibration  (RMSEC) and the Root 
Mean Square Error of Prediction (RMSEP). These data 
were obtained using the developed model to predict all 
the calibration data set samples as unknown samples by 
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the cross validation procedure. RMSEC was interpreted 
as the average error of calibration and RMSEP was 
interpreted as the average error of prediction.

The best models were obtained without making any 
additional signal pretreatment to centering data that is 
a default option of the Unscrambler software.

According to the data presented in Table 2, both 
UVVIS and NIR models have high values of R squared 
correlation for calibration and prediction for Sulphur 
content, Microcarbon residue and basic nitrogen predic-
tion. This indicates that in all the cases there is a strong 
correlation between the spectra and the property. 

The calibration and validation errors of both methods 
using the calibration data set are lower than the analyti-
cal reproducibility defined in Table 3 for Sulphur con-
tent prediction at the different levels shown in Table 1. 
UVVIS model for predicting Microcarbon residue 
shows errors near the standard analytical reproducibility 
for the lower level indicated in Table 1. Nevertheless 
this method may be used with confidence for higher 
levels of Microcarbon residue in the samples. The 
analytical reproducibility values were calculated using 

the equations given in the standard methods that were 
previously reported (Baldrich, 2008).

The variation between Root mean Square error of 
calibration (RMSEC) and RMSEP in Table 2 shows the 
robustness of the models. Metals predictions by the NIR 
models presented the higher relative difference between 
RMSEC and RMSEP. This indicates that these models 
are the least robust of all the evaluated models. UVVIS 
models for predicting the content of metals are stronger 
and show a smaller variation in these parameters. 

 Table 3 and Figures 18 to 23 show the results ob-
tained when the models were applied to samples not 
contained in the calibration data set. The RMSEP val-
ues in Table 3 are mostly higher than those in Table 2.  
The RMSEP values of Table 3 could be considered as 
the expected errors when the methods are applied to 
routine sample analysis. 

 From the tabulated data of validation results (See 
Table 3), it was observed that UVVIS method gave 
the lower values of RMSEP for sulphur, microcarbon 
residue, Nickel and Vanadium. NIR models give lower 
RMSEP for density and basic nitrogen. 
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Figure 18. Performance of models for predicting sulphur content in the validation sample set

Figure 19. Performance of models for predicting density in the validation sample set
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Figure 20. Performance of models for microcarbon residue content prediction in the validation sample set
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Figure 21. Performance of models for basic nitrogen prediction in the validation sample set
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Figure 22. Performance of models for nickel content prediction in the validation sample set
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Figure 23. Performance of models for vanadium content prediction in the validation sample set
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As it was pointed out before, metals prediction 
models by NIR have a lower R squared value in the 
parity plots and also has the highest RMSEP values. 
The limitations of NIR models for predicting metals 
are related to the sensitivity of NIR to these properties. 
Also the bias reported in Table 3, indicates that the metal 
predicted values are systematically different from to the 
measured values. Use of these methods would need a 
bias correction.

Table 4 shows the relationship between measured 
value of the properties specified on Table 1 and RMSEP 
values of the same properties tabulated in Table 3. Since 
RMSEP represents the prediction errors it is expected 
that the prediction accuracies increase at higher value of 
the relationships between measured value and RMSEP. 
This is observed for sulphur, density and basic nitrogen 
predictions using the both of the methods evaluated at 
the different measurement levels used in this research. 
For microcarbon residue MCR contents near 0,35%w, 
the relationships are 1,5 and 2,1 for NIR and UVVIS 
models respectively indicating predictions of low ac-
curacy. Where the measured values are higher (higher 
than 1,5% w), the accuracy of the predictions increase 
for both of the methods.

 Metals contents are predicted with low accuracy. 
According to the tabulated values for metal content near 
1 ppm the expected relative errors could be higher than 
100% for NIR models. At higher level (higher than 5 
ppm) the expected relative prediction error is accept-
able. UVVIS models for predicting metals (Ni and V) 
show better accuracy in Table 4, but are limited for low 
metal content as NIR models.

Because the average expected errors for metals 
content by NIR are around or greater the analytical 
reproducibilities given in Table 3, it is recommended 
that this method be used for following trends of dif-
ferences of these properties but not as standard test 
methods. UVVIS models could be used with confidence 
for predicting metals content of samples with contents 
of nickel and vanadium of the order of 3 ppm or higher.

Comparing the RMSEP values obtained in the vali-
dation step with the analytical reproducibility it could 
be said that UVVIS and NIR predictive models could 
be used with confidence to follow the sulphur content, 
the density, and the basic nitrogen of FCC feedstocks.

MCR predictions by both of the methodologies are 
expected to be accurate when the MCR content of the 
samples is at least 1,5% w. For lower concentrations 
the predictions of this property should be used carefully.

CONCLUSIONS 

•	 Comparing the validation results of the chemomet-
ric analysis of UVVIS and NIR spectra of FCC 
feedstocks, mathematical processing of UVVIS 
spectrum gives more accurate results in the predic-
tion of Sulphur, Microcarbon residue (MCR), nickel 
and vanadium of FCC feedstock. The processing 
of NIR spectrum gives more accurate results in the 
prediction of basic nitrogen and density.

•	 Inspection of the data presented in Tables 3 and 
4, indicates that the accuracy of the predictions of 

ANALITYCAL METHOD

MEASURED VALUE/RMSP

NIR UVVIS

MIN MAX AVERAGE MIN MAX AVERAGE

SULPHUR (%wt) ASTM D4294 15,3 26,7 19,4 33,3 58,0 42,3

DENSITY (15,6°c) (kG.L-1) ASTM D5002 764,1 783,6 775,0 539,4 553,1 547,1

BASIC NITROGEN (%wt) 21,4 35,7 29,6 16,7 27,8 23,0

MICROCARBON RESIDUE (%wt) ASTM D4530 1,5 10,7 6,9 2,1 15,2 9,9

NICKEL (%wt) ASTM D5863 0,6 6,4 3,2 1,0 11,5 5,7

VANADIUM (%wt) ASTM D5863 1,1 9,0 4,5 1,7 14,2 7,1

Table 4. Relationship between measured value and prediction error
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sulphur content and density by both of the evaluated 
methodologies are lower than the reproducibility of 
the respective analytical methods. This indicates that 
either could used for measuring these properties.

•	 From the values of prediction errors and reproduc-
ibility of the methods presented in Table 3 the UV-
VIS spectrophotometry may be used as a reliable 
analytical tool for operational analysis. 

•	 UVVIS spectrophotometry allows better discrimi-
nation between different feedstocks than does NIR 
spectrophotometry as was shown by the PCA analy-
sis of the spectral data.
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