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analysis to NIR and UWVIS spectral data obtained from feedsctock samples corresponding to the differ-

ent Ecopetrol S.A., Barrancabermeja Refinery FCC units for predicting some important physicochemical
properties. The results show the utility of both methodologies here evaluated to follow up the quality of these
types of refinery streams and present the advantages and disadvantages of each methodology for predicting
the feedstock properties here evaluated.

In this paper a comparison is made between the performance of models developed by applying chemometric
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n este articulo se hace una comparacién entre el desempefio de modelos desarrollados aplicando

el andlisis quimiométrico a la informacién espectral en la regién del infrarojo cercano (NIR) y en el

ultravioleta visible (UVVIS) para predecir algunas de las més importantes propiedades fisicoquimicas
de las cargas al proceso de ruptura catalitica. Las muestras utilizadas se obtuvieron directamente de las
diferentes unidades de ruptura catalitica en lecho fluidizado (FCC) que posee Ecopetrol S.A., en su refineria
de Barrancabermeija. Los resultados muestran la utilidad de las dos metodologias aqui evaluadas para hacer
un seguimiento a la calidad de estos tipos de corrientes de refineria y presenta las ventajas y desventajas de
cada metodologia para predecir las propiedades fisicoquimicas aqui evaluadas.

Palabras clave: Quimiometria, carga, infrarojo cercano, espectroforfometria ultravioleta visible.
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INTRODUCTION

The development of faster analytical techniques for
quality control of process and products has become
very important in the petrochemical industry because,
generally, the routine analyses are time consuming and
require special conditions for their application. In recent
years Nir spectrophotometry, combined with multivariate
calibration techniques, has been used as a tool to predict
simultaneously several chemical and physical proper-
ties in crude oil (Falla, Larini, Le Roux, Quina, Moro &
Nascimento, 2006) and the different derived products
such as gasoline (Bohacs, Ovadi, & Salgo, 1998), diesel
(Breitkreitz, Raimundo, Rohwedder, Pasquini, Dantas,
Joséb & Araujo, 2003), kerosene (Chung, Ku & Lee,
1999) and other products. The development of optical
fiber working in NIR range makes it possible to derive
on line applications for identifying petroleum products
(Chung, Choi & Ku, 1999), controlling distillation pro-
cesses (Pasquini & Scali, 2003) and catalytic reforming
units (Xiaoli, Hongfu & Wanzhen, 2005). NIR on line
applications for light and middle petroleum products
(Zanier-Szydlowski, Quignard, Baco, Biguerd, Carpot
& Wahl, 1999) do not require sample preparation and
are easily developed, but a sample pretreatment to
the working conditions of the spectrophotometer is a
required step (filtering and temperature conditioning).
For heavier samples like FCC feedstocks, it is often
difficult to develop on line applications due to the viscos-
ity of these highly colored samples which contaminate
the sample cells and the sample pretreatment systems.
Nuclear magnetic resonance NMR is another technology
that competes with NIR for online applications (Gilbert,
Bueno & Lima, 2003).

On the other hand, UV spectroscopy has been used
for hydrocarbons type estimation in light gas oils and
diesel fuels (Wentzell, Andrews, Walls, Cooley & Spen-
cer, 1999), for monitoring the naphthalene content in
jet fuel (ASTM D 1840, 2007), for complex aromatic
systems characterization (Loppnow, Shoute, Schmidt,
Savage, Hall & Bulmer, 2004), for crude oil classifica-
tion and evaluation (Evdokimov & Losev, 2007) and
to analyze and predict chemical composition of FCC
feedstocks (Baldrich & Novoa, 2007). Unfortunately,
this technology could not be applied for on line moni-
toring because of the sample preparation requirements.
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Operational analysis of FCC industrial units requires
knowing at least the following variables of the feed-
stocks: microcarbon residue for the heat balance, nickel
and vanadium content for defining the catalyst addition
rate to the unit, basic nitrogen for estimating the partial
deactivation of the catalyst and sulphur content to esti-
mate the amount of sulfur in the regenerating flue gas.

Most of the analytical tests for characterization of FCC
feedstocks are performed at the laboratory scale using stan-
dard test methods that are time consuming. It is necessary
to determine these properties more quickly for improving
refinery operations. This requirement has stimulated the
development of alternative methods that allow obtaining
this information more quickly. NIR spectrometry has been
considered here as an alternative because it meets these
needs and requires no sample pretreatment.

Authors of this paper have been working with UV-
VIS spectrophotometry to obtain some of the chemical
properties of this type of sample but up to this time no
models for predicting the above mentioned properties
have yet been developed.

In this work UV VIS spectrophotometry is used to
predict properties required for routine analysis of FCC
feedstocks and we compare this technique with the
results from NIR spectrophotometry.

EXPERIMENTAL SECTION

This study includes 89 samples obtained directly
from the ECOPETROL S.A. Refinery located at Bar-
rancabermeja where there are 4 different fluid catalytic
cracking (FCC) units. One of them is a MODEL IV
which processes a mixture of gas oils and a paraffinic
reduced crude oil. Another one is the ORTHOFLOW
FCC unit whose feedstock is a mixture of vacuum
gas oils and demetallized oil (DMO) obtained by an
extraction process with light solvents (propane and
butanes) of vacuum tower bottoms as feedstock. There
is also one UOP 1 FCC unit which processes a blend
of vacuum gas oil, paraffinic reduced crude oil, hy-
drotreated demetallized oil (DMOH), and visbreaking
nafta as feedstock. The last one is UOP2 FCC unit
which processes paraffinic reduced crude oil, DMOH
and vacuum gas oil. Table 1 summarizes some statisti-
cal parameters of physicochemical properties (sulphur,
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Table 1. Physicochemical characterization of FCC feedstocks

SULPHUR (%wt) ASTM D4294 0,696 1,213 0,884 0,134
DENSITY (15,6°C) (kg.I") ASTM D5002 0,9169 0,9403 0,9300 0,0050
BASIC NITROGEN (%wt) UOP 269 0,0450 0,0750 0,0622 0,0091

MICROCARBON RESIDUE (%wt)  ASTM D4530 0,330 2,380 1,542 0,661

NICKEL (PPM wi) ASTM D 5863 0,59 6,51 3,22 1,59

VANADIUM (PPM wt) ASTM D 5863 1,11 9,13 4,57 1,86

density, API gravity, basic nitrogen, microcarbon resid,
nickel and vanadium) of the samples used in this re-
search, determined by using standard test procedures.

NIR spectrums were collected over the 3600 to 8000
cmr! spectral region with an ABB FTLA2000-154 NIR
spectrophotometer equipped with a CSi source and a
Deuterated triglycine sulfate (DTGS) detector. Each NIR
spectrum corresponded to an accumulation of 32 scans
with a 4 cm! resolution and using an optical path length
of 0,5 mm. For NIR analysis, there was no any sampling
preparation step. The temperature of the measurement cell
was maintained at 40°C during the experiments. The UV-
VIS spectrum was obtained in a HP8453 spectrophotom-
eter with a diode arrangement detector. Spectrums were
obtained over solutions of the samples in cyclohexane
spectroscopic grade. The thickness of the used sample
cells were 1mm or 2mm. All the spectra were normalized
taking into account the mass of the analyzed sample and
the cell thickness (Baldrich, 2008).

The normalized UVVIS and NIR spectra and the
properties of different samples were input to the Un-
scrambler v.9.7. Partial least squares regression (PLSR)
was used as the technique for generating all the predic-
tive models, and principal components analysis (PCA)
was performed to determine the discrimination power
of NIR and UVVIS techniques.

RESULTS AND DISCUSION

Figures 1 to 4 present the statistical analysis of all
the measured properties for all of the sample groups.
The graphs show the lower and higher limit for each
property. The lower limit of the box corresponds to the
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highest property values for 25% of the samples and the
higher limit is the maximum property value for 75%
of the samples. The central line is the average value
for each property.

It can be seen on these graphs that the model IV
samples have the lowest contents of microcarbon
residue and metals (Ni and V). Orthoflow samples are
characterized by the highest content of metals. The
content of metals of UOP 1 samples is lower than those
of orthoflow samples. UOP 2 samples have a lower
concentration of metals than UOP 1 samples.

Statistical analysis indicates that Model [V samples
have the lowest content of basic nitrogen. UOP 1, Or-
thoflow and UOP 2 samples have similar concentration
of basic nitrogen.

Analytical results were inspected to evaluate the
general consistency of the data. The interdependence
between properties was determined. The only one found
was that between Nickel and vanadium content. Figure
5 shows the correlation between these two variables.
One of the samples was an outlier and was not taken
into account in developing the prediction models for
the content of metals.

Histograms for the different properties for all of
sample were plotted to assess the data consistency.
Extreme samples that were different from the average
were neglected in the development of the models.

Figures 6 to 13 are examples of these type of graphs
used for data consistency analysis. For example in Fig-
ure 6, 2 samples with vanadium content lower from the
average of the Orthoflow samples were neglected in the
development of vanadium predicting model. In a similar
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Figure 3. Summary of statistical analysis of UOP 1 feedstock samples

properties
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Figure 4. Summary of statistical analysis of UOP 2 feedstock samples
properties
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Figure 5. Lineal relationship between Nickel and Vanadium content in
the evaluated samples

way, in Figure 7 one UOP 1 sample with a very high con-
tent of vanadium was neglected in the model. This sample
corresponds to the one observed as outlier in Figure 5.

Based on Figure 8, one of the Model IV samples
was rejected for developing the model for predicting
nickel content. Three more samples were rejected
for developing this model from results presented on
Figures 9 and 10.
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Figure 6. Histogram of vanadium content for orthoflow samples

Based on Figure 11 one sample was removed for
developing and testing the Sulphur content models.
Taking into account the results presented in Figure 12
one sample was removed for developing and testing
basic nitrogen predictive models.

Finally, based on Figure 13 results one sample was
removed for developing and testing density predictive
models.
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Figure 7. Histogram of vanadium content for UOP1 samples
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Figure 8. Histogram of nickel content in Model IV samples
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Figure 9. Histogram of nickel content in Orthoflow samples

Histogram plot No. of Elements

4 Elements: 25
Skewness:  1,367636
Kurtosis: 2,225830
Mean: 1,052350

34 Variance: 0,002647
SDev: 0,051452

2]

14

0]

272 2,4 206 2;8
dataorinirabbcargcommgenrevmay2009 - Histogram Plot, uop2, NICKEL (ppm wt)

Figure 10. Histogram of nickel content in UOP 2 samples
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Figure 11. Histogram of sulphur content in Orthoflow samples
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Figure 13. Histogram of density in Model IV samples
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Figure 12. Histogram of basic nitrogen in UOP 1 samples

Figures 14 and 15 show the NIR and UV VIS spec-
tra of the samples used in this research. According to
these graphs UV VIS spectra show more leverage than
does NIR spectra.

In NIR spectra bands related to combination and
overtones of C-H bonds in the different compounds (par-
affins, cycloparaffins, aromatics and resins) are observed.

The bands observed in UV VIS spectra are related
to different aromatic compounds (mono, di, tri, tetra
and more complex aromatics) present in the samples.
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Figure 14. NIR spectra of FCC feedstocks
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Figure 16. Score plot of PCA of UWVIS spectral data of FCC feedstocks

Principal component analysis was performed from
the whole UV VIS spectra and from the region 3983 to
4412 cm! of the NIR spectra. The score plots obtained
by this technique are shown in Figures 16 and 17 for
UVVIS spectral data and NIR spectral data respectively.

Inspection of these figures shows better discrimi-
nation between the lighter feedstocks (model IV) and
the others by Uvvis spectrophotometry. In Figure
16, Model IV samples, appears as a separated cluster
whilst in Figure 17 they appear together with orthoflow
samples. Four clusters appear in this figure indicating
an important mixing of samples in the different clusters.
For example orthoflow samples appeared in two clus-
ters together with Model IV samples in one of them and
with UOP1 samples in the other. Two separated clusters
also appear in this figure which contains samples of
UOP1 and UOP2 feedstocks.

For the development and testing of the predictive
models, samples were arranged in two sets: the cali-
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Figure 15. UWVIS specira of FCC feedstocks
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Figure 17. Score Plot of PCA of NIR spectral data of FCC feedstocks

bration and validation data sets the first one with 45
samples and the second one with 44 samples. Both
of the signals (NIR and UVVIS) were correlated with
the properties of the feedstocks using the Unscrambler
software v.9.7. Models were developed by PLS using
the options cross validation and center data. All the
available samples were sorted in ascending order by
microcarbon residue content using the Unscrambler
software. Samples with odd number in this arrangement
were selected for the calibration data set and samples
with even number were used for the validation data set.

All the statistical results that indicate the perfor-
mance of the different models are presented in Table 2
which shows the square of correlation coefficient for
calibration and prediction, the number of components
required to explain the data variance, the Root mean
Square error of calibration (RMSEC) and the Root
Mean Square Error of Prediction (RMSEP). These data
were obtained using the developed model to predict all
the calibration data set samples as unknown samples by

119



papodai joN (1)
0€'l Zv'e 9€0 88020  8/190 LS¥9'0  ¥¥Te'o- L1460  6210°L (i wdd) WNIQYNVA
' 1G'E 860 LEECZ'0-  861S'0  0¥9S'0  ¥¥CE0-  TlLE'0  6210'L (i wdd) I3DIN
9z1Z'0 8162’0 6SSL'0 L6200 SSSL'0 G9GL'0 89500 ¥/1Z'0  2ZTT'0 (M%) 3NAISTY NOGIVOOUDIW
(1) 0100°0- 92000 /2000 €000°0- 1200’0 1200’0 (™ %) NIDOYLIN DISvd
8€00°0 6€00°0 8€00°0 2000’0~ £1000 £1000 L000'0- 21000 Z100°0 (1-1'83) (2:9G 1) ALISNIA
L7110 l¥SL'0  €160°0  #100°0- 1120’0 60200  SGLOO'0O  09¥0'0  SS¥O'0 (%) ¥NHAINS
JOVIIAVY NIW Svig d3S dISWY Svid d3s dISW
|||

195 DJOP UOHDPIDA dY} Yiim sjapow aAldIpald GIAAN PUD YN JO SHNSSJ UOHDPIOA “€ 3|90

CARLOS-A. BALDRICH et al

7 : 7 s 7 7 : 7 A.—; CLQQV
/SS¥°0 /€111 2GS2'0 9//¥'0 1126'0 18950 29/6'0 8916'0 14 8 €985 WISY 1o GvvA
7 i’ 7 "’ 7/ 7 7 1 ?\5 EQQV
£69€'0 0562'0 9652'0 ¥OLE0 £0£6'0 16190 1%96'0 88¥6'0 8 8 €98 WISY  “oun
. . . , . , , . 0£svad (M%)
68S1°0 ¥592'0 SYLL'O 8022'0 95¥6°0 ¥8¥8'0 G0/6'0 £068'0 S g A1SY I
(M%)
92000 81000 ¥200'0 91000 15260 V€960 2560 0£26'0 £ G 692 dON  NIDOWLIN
ISy
260vQ (1-1'631)
£200°0 £000°0 912000 90000 ££61'0 68260 0/18°0 £/86'0 £ G (D:9°G1)
WLSY
ALISNAQ
, . . , , , , . 14 YALq (mg)
86200 yE¥0'0 £020'0 /S€0°0 /1560 6968'0 ¥9/6'0 1£26'0 8 G WLSY AAHANS

SIAMN 3N SIAMN NN SIAMN AN SIAMAN AN SIAMAN ..

{95 DJDP UOKDIQIDD By} Ul S|pow aAlIpald GIAAN PUP YIN JO @2ubuwiiopiad |DIUSYDIS *Z 9|qP|

Jun. 2010

CT&F - Ciencia, Tecnologia y Futuro - Vol. 4 Num. 1

120



COMPARISON BETWEEN NIR AND UWVIS SPECTRA CHEMOMETRICS FOR PREDICTING FCC FEEDSTOCKS PROPERTIES

the cross validation procedure. RMSEC was interpreted
as the average error of calibration and RMSEP was
interpreted as the average error of prediction.

The best models were obtained without making any
additional signal pretreatment to centering data that is
a default option of the Unscrambler software.

According to the data presented in Table 2, both
UVVIS and NIR models have high values of R squared
correlation for calibration and prediction for Sulphur
content, Microcarbon residue and basic nitrogen predic-
tion. This indicates that in all the cases there is a strong
correlation between the spectra and the property.

The calibration and validation errors of both methods
using the calibration data set are lower than the analyti-
cal reproducibility defined in Table 3 for Sulphur con-
tent prediction at the different levels shown in Table 1.
UVVIS model for predicting Microcarbon residue
shows errors near the standard analytical reproducibility
for the lower level indicated in Table 1. Nevertheless
this method may be used with confidence for higher
levels of Microcarbon residue in the samples. The
analytical reproducibility values were calculated using

Predicted Y
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the equations given in the standard methods that were
previously reported (Baldrich, 2008).

The variation between Root mean Square error of
calibration (RMSEC) and RMSEP in Table 2 shows the
robustness of the models. Metals predictions by the NIR
models presented the higher relative difference between
RMSEC and RMSEP. This indicates that these models
are the least robust of all the evaluated models. UV VIS
models for predicting the content of metals are stronger
and show a smaller variation in these parameters.

Table 3 and Figures 18 to 23 show the results ob-
tained when the models were applied to samples not
contained in the calibration data set. The RMSEP val-
ues in Table 3 are mostly higher than those in Table 2.
The RMSEP values of Table 3 could be considered as
the expected errors when the methods are applied to
routine sample analysis.

From the tabulated data of validation results (See
Table 3), it was observed that UVVIS method gave
the lower values of RMSEP for sulphur, microcarbon
residue, Nickel and Vanadium. NIR models give lower
RMSEP for density and basic nitrogen.
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Figure 18. Performance of models for predicting sulphur content in the validation sample set
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Figure 19. Performance of models for predicting density in the validation sample set
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Figure 20. Performance of models for microcarbon residue content prediction in the validation sample set

Predicted Y Predicted Y
0,075 0,075
Elements: 44 Py Elements: 44 2
Slope: 0,858408 Slope: 0,913877 [
0,070  Offset: 0,008545 NIR 0,070 7 Offset: 0,004417
Correlation: 0,975566 Correlation: 0,954255 uwvis - 20
R-Square: 0,941348 3 0,065 - R-Square: 0,897797 R
0,065 | RMSEP: 0,002059 bl ) RMSEP: 0,002717 .
SEP: 0,002060 ER ] SEP: 0,002571 18 g2 32
Bias: -0,000298 B 18 0,060 -1 Bias: -0,000961 15
0,060
g 0,055
0,055 -
0,050 —
0,050 o o045 a
<2
0,045 7 Y Reference o040 Y Reference
0,045 0,050 0,055 0,060 0,065 0,070 0,075 0,045 0,050 0,055 0,060 0,065 0,070 0,075
RESULTS, (Y-var, PC): (BASIC NITROGEN (%wt), 5) RESULTY, (Y-var, PC): (BASIC NITROGEN (%wt), 3)
Figure 21. Performance of models for basic nitrogen prediction in the validation sample set
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Figure 22. Performance of models for nickel content prediction in the validation sample set
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Figure 23. Performance of models for vanadium content prediction in the validation sample set
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As it was pointed out before, metals prediction
models by NIR have a lower R squared value in the
parity plots and also has the highest RMSEP values.
The limitations of NIR models for predicting metals
are related to the sensitivity of NIR to these properties.
Also the bias reported in Table 3, indicates that the metal
predicted values are systematically different from to the
measured values. Use of these methods would need a
bias correction.

Table 4 shows the relationship between measured
value of the properties specified on Table 1 and RMSEP
values of the same properties tabulated in Table 3. Since
RMSERP represents the prediction errors it is expected
that the prediction accuracies increase at higher value of
the relationships between measured value and RMSEP.
This is observed for sulphur, density and basic nitrogen
predictions using the both of the methods evaluated at
the different measurement levels used in this research.
For microcarbon residue MCR contents near 0,35%w,
the relationships are 1,5 and 2,1 for NIR and UV VIS
models respectively indicating predictions of low ac-
curacy. Where the measured values are higher (higher
than 1,5% w), the accuracy of the predictions increase
for both of the methods.

Metals contents are predicted with low accuracy.
According to the tabulated values for metal content near
1 ppm the expected relative errors could be higher than
100% for NIR models. At higher level (higher than 5
ppm) the expected relative prediction error is accept-
able. UV VIS models for predicting metals (Ni and V)
show better accuracy in Table 4, but are limited for low
metal content as NIR models.

Because the average expected errors for metals
content by NIR are around or greater the analytical
reproducibilities given in Table 3, it is recommended
that this method be used for following trends of dif-
ferences of these properties but not as standard test
methods. UV VIS models could be used with confidence
for predicting metals content of samples with contents
of nickel and vanadium of the order of 3 ppm or higher.

Comparing the RMSEP values obtained in the vali-
dation step with the analytical reproducibility it could
be said that UVVIS and NIR predictive models could
be used with confidence to follow the sulphur content,
the density, and the basic nitrogen of FCC feedstocks.

MCR predictions by both of the methodologies are
expected to be accurate when the MCR content of the
samples is at least 1,5% w. For lower concentrations
the predictions of this property should be used carefully.

CONCLUSIONS

° Comparing the validation results of the chemomet-

ric analysis of UVVIS and NIR spectra of FCC
feedstocks, mathematical processing of UVVIS
spectrum gives more accurate results in the predic-
tion of Sulphur, Microcarbon residue (MCR), nickel
and vanadium of FCC feedstock. The processing
of NIR spectrum gives more accurate results in the
prediction of basic nitrogen and density.

Inspection of the data presented in Tables 3 and
4, indicates that the accuracy of the predictions of

Table 4. Relationship between measured value and prediction error

© MEASUREDVALUERMSP
NIR UWIS
MIN MAX AVERAGE MIN MAX AVERAGE
SULPHUR (%wt) ASTM D4294 15,3 26,7 19,4 33,3 58,0 42,3
DENSITY (15,6%) (kG.L1) ASTM D5002 764,1 783,6 775,0 539,4 553,1 5471
BASIC NITROGEN (%w) 21,4 35,7 29,6 16,7 27,8 23,0
MICROCARBON RESIDUE (%wt) ASTM D4530 1,5 10,7 6,9 2,1 15,2 9,9
NICKEL (%wt) ASTM D5863 0,6 6,4 3,2 1,0 11,5 5,7
VANADIUM (%wt) ASTM D5863 1,1 9,0 4,5 1,7 14,2 7,1
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sulphur content and density by both of the evaluated
methodologies are lower than the reproducibility of
the respective analytical methods. This indicates that
either could used for measuring these properties.

*  From the values of prediction errors and reproduc-
ibility of the methods presented in Table 3 the UV-
VIS spectrophotometry may be used as a reliable
analytical tool for operational analysis.

* UVVIS spectrophotometry allows better discrimi-
nation between different feedstocks than does NIR
spectrophotometry as was shown by the PCA analy-
sis of the spectral data.

ACKNOWLEDGMENTS

To the Coordinator of analytical labs of ECOPE-
TROL S.A. — ICP and the Spectroscopy lab staff for
providing the spectrum of the samples used in this
research. To lan Fisher for helping us to improve the
english version.

REFERENCES

ASTM D1840 (2007). American Society for Testing and
Materials. Naphthalene hydrocarbons in aviation turbine
fuels by ultraviolet spectrophotometry. Philadelphia, Spp.

ASTM D4294 (2008). American Society for Testing and
Materials. Standard test method for sulfur in petroleum
and petroleum products by energy dispersive x-ray fluo-
rescence spectrometry. Philadelphia, 9pp.

ASTM D4530 (2007). American Society for Testing and Ma-
terials. Standard test method for determination of carbon
residue (micro method). Philadelphia, 20pp.

ASTM D5002-99 (2005). American Society for Testing and Ma-
terials. Standard test method for density and relative density
of crude oils by digital density analyzer. Philadelphia, Spp.

ASTM D5863 (2000). American Society for Testing and
Materials. Standard test methods for determination of
nickel, vanadium, iron and sodium in crude oils and re-
sidual fuel oils by flame atomic absorption spectrometry.
Philadelphia. 7pp.

124

Baldrich, C. (2008). Prediction of physicochemical proper-
ties of FCC feedstock by chemometric analysis of their
ultraviolet spectrum. CT&F — Ciencia, Tecnologia y
Futuro. 3 (4), 143-156.

Baldrich, C., & Novoa, L. (2007). Detailed chemical charac-
terization of petroleum middle fractions by chemometrics
analysis of their ultraviolet spectrum. CT&F — Ciencia,
Tecnologia y Futuro. 3 (3), 173-190.

Bohécs, G., Ovadi, Z., & Salgo, A. (1998). Prediction of
gasoline properties with near infrared spectroscopy. J.
Near Infrared Spectrosc, 6: 341-348.

Breitkreitz, M., Raimundo, 1., Rohwedder, J., Pasquini, C.,
Dantas, H., Joséb, G., & Araujo, M. (2003). Determina-
tion of total sulfur in diesel fuel employing NIR spec-
trophotometry and multivariate calibration. Analyst. 128:
1204-1207.

Chung, H., Choi, H., & Ku, M. (1999). Rapid Identification
of Petroleum Products by Near-Infrared Spectroscopy.
Bull. Korean Chem. Soc, 20: 1021-1025.

Chung, H., Ku, M., & Lee, J. (1999). Comparison of near-
infrared and mid-infrared spectroscopy for the determina-
tion of distillation property of kerosene. Vib. Spectrosc,
20: 155-163.

Evdokimov, 1., & Losev, A. (2007). Potential of uv-visible
absorption spectroscopy for characterizing crude petro-
leum oils. Oil and Gas Business: Electronic Scientific
Journal, 21pp. http://www.ogbus.ru/eng/authors/Evdo-
kimov/Evdokimov_1e.pdf.

Falla, F., Larini, C., Le Roux, G., Quina, F., Moro, L., & Nas-
cimento, C. (2006). Characterization of crude petroleum
by NIR. J. Petrol. Sci. and Eng, 51: 127—137.

Gilbert, W. R., Bueno, A. F., & Lima, F. S. G. (2003). Com-
parison of NIR and NMR spectra chemometrics for FCC
feed online characterization. Int. Symp. on Advances in
Fluid Cracking Catalysts (FCC'’s) Technology, N°6. New
York, NY, September 7-11: 48 (2), 220-223.

Loppnow, G. R., Shoute, L., Schmidt, K. J., Savage, A., Hall,
R. H., & Bulmer, J. T. (2004). UV Raman spectroscopy
of hydrocarbons. Phil. Trans. R. Soc. Lond. A. 362:
2461-2476.

Pasquini, C., & Scali, S. (2003). Real-time monitoring of
distillations by near-infrared spectroscopy. Anal. Chem,
75:2270-2275.

CT&F - Ciencia, Tecnologia y Futuro - Vol. 4 Nom. 1 Jun. 2010



COMPARISON BETWEEN NIR AND UWVIS SPECTRA CHEMOMETRICS FOR PREDICTING FCC FEEDSTOCKS PROPERTIES

UOP Method 269-10. Nitrogen bases in hydrocarbons by
potentiometric titration.Philadelphia. 10pp.

Wentzell, P., Andrews, D., Walls, J., Cooley, J., & Spencer, P.
(1999). Estimation of hydrocarbon types in light gas oils
and diesel fuels by ultraviolet absorption spectroscopy
and multivariate calibration. Can. J. Chem, 77: 391-400.

Xiaoli, C., Hongfu, Y., & Wanzhen, L. (2005). In-line moni-
toring of several pilot scale catalytic reforming units us-
ing a short-wavelength near infrared analyser. J. Near
Infrared Spectrosc, 13: 37-45.

Zanier-Szydlowski, N., Quignard, A., Baco, F., Biguerd,
H., Carpot, L., & Wahl, F. (1999). Control of refining
processes on mid-distillate by near infrared spectroscopy.
Oil & Gas Sci. and Technol., 54: 463-472.

CT&F - Ciencia, Tecnologia y Futuro - Vol. 4 Nom. 1 Jun. 2010

125






