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DEVELOPMENT OF INFILL
DRILLING RECOVERY

MODELS FOR CARBONATE
RESERVOIRS USING NEURAL

NETWORKS AND MULTIVARIATE
STATISTICAL AS A NOVEL

METHOD

his work introduces a novel methodology to improve reservoir characterization models. In this
methodology we integrated multivariate statistical analyses, and neural network models for forecasting
the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations

in West Texas. Development of the oil recovery forecast models help us to understand the relative importance of
dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the
database, forecast recoveries for possible new units in similar geological setting, and make operational (infill
drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We
have developed intelligent software (Soto, 1998), Oilfield Intelligence (OI), as an engineering tool to improve
the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis.
It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and
inference engine modules. One of the challenges in this research was to identify the dominant and the optimum
number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net
thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial
waterflooding, number of wells for primary recovery, number of infill wells over the initial waterflooding, PRUR,
IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum
number of independent variables. We compared the results from neural network models with the non-parametric
approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it
retains a large variance of forecast results for a particular data set. We also used neural network concepts to
develop recovery models. The neural network infill drilling recovery model is capable of forecasting the oil
recovery with less error variance compared with non-parametric, fuzzy logic and regression models.
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ste trabajo introduce una metodología novedosa para mejorar los modelos de caracterización de
yacimientos. En esta investigación se usaron técnicas de estadística multivariada y redes neuronales
para desarrollar modelos de predicción de los recobros primarios de aceite (PRUR), recobros de aceite

al inicio de la inyección de agua (IWUR) y recobros de aceite debido a la perforación de pozos de relleno (IDUR)
en yacimientos de carbonatos localizados en el este de Texas. Los modelos desarrollados fueron comparados
con los modelos de regresión no-lineal y con los de regresión no-paramétrica.  Uno de los desafíos en esta
investigación fue identificar las variables independientes dominantes y el número óptimo de estas. Para ello se
desarrolló un sistema inteligente (Soto, 1998), Oilfield Intelligence (OI), que integra conceptos de componen-
tes principales, análisis de factores y redes neuronales. OI está compuesto por cinco subsistemas: carga y
preprocesamiento de los datos, diseño de la arquitectura de la red neuronal, diseño gráfico y una máquina de
inferencia. El análisis multivariado de componentes principales permite resolver el problema de dimensionalidad.
Cuántas y cuáles variables deberían usarse en la obtención de cada modelo. Después se utilizaron las redes
neuronales para desarrollar modelos capaces de predecir los recobros primarios, de inyección de agua y
debido a la perforación de pozos de relleno en las formaciones de carbonato de San Andrés y Clearfork en el
este de Texas. Los coeficientes de correlación son del orden del 99% con errores absolutos no mayores del 3%
comparados con coeficientes de correlación del orden de 0.91 y errores absolutos alrededor del 27% de otros
modelos publicados internacionalmente en los últimos 15 años.  Las variables consideradas en esta investiga-
ción fueron porosidad, permeabilidad, saturación de agua, profundidad, área, espesor total, espesor neto,
factor volumétrico de formación,  presión, viscosidad, gravedad API, número de pozos al inicio de la inyección
de agua, número de pozos para la recuperación primaria, número de pozos de relleno al inicio de la inyección
de agua, PRUR, IWUR, e IDUR. Obviamente el desarrollo de un modelo en redes neuronales que represente con
alta precisión los datos requiere experiencia del ingeniero para realizar un control de calidad de los datos,
determinar las variables dominantes y optimizar la estructura o topología de la red neuronal.
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INTRODUCTION

The amount of oil that can be recovered from an oil
reservoir is dependent on the reservoir characteristics,
recovery method, number of wells, and operations
efficiency. Waterflooding is often used as a secondary
recovery process after the reservoir has been produced
during primary recovery. Since most reservoirs are heter-
ogeneous, infill drilling after an initial water flood permits
production of oil from parts of the reservoir that might
otherwise have been bypassed (Wu et al. 1992; Wu et
al., 1988; Shao et al., 1994a; French et al., 1991).
Researchers and engineers have shown that the infill
drilling in the West Texas carbonate reservoirs has
indeed accelerated and increased oil recovery (Lu et al.,
1993, 1994). However, the dominant mechanisms and
parameters (independent variables) that affect the oil
recovery are not fully identified or may be subjected to
varying degrees of uncertainty. To forecast or predict
infill drilling recovery efficiency of an individual unit or
a reservoir is a difficult task for most reservoir-engi-
neering professionals.

Many approaches are used to evaluate infill drilling
recovery efficiency. One is based on unit recovery effi-
ciency and reservoir analysis, plus the reservoir engi-
neer�s experience and intuition. A more elaborate
approach is the use of a �reservoir simulator�, which
requires detailed and yet uncertain input reservoir and

NOMENCLATURE
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ACE alternating conditional expectations
API API gravity of crude oil
AREA productive area (acres)
BASIN basin index: 1 for San Andres, 2 for  Clearfork
E performance index
f transformed function
FVF oil formation volume factor  (RB/STB)
GROSS gross pay (m)
IDUR infill drilling ultimate oil recovery  (MSTB)
IWUR initial waterflood ultimate oil Recovery (MSTB)
k node index of output layer
n index of independent variables
NET net pay (m)
NOIW number of wells after infill drilling
NOPW number of wells for primary Recovery
NOWW number of wells for initial Waterflooding
PRUR primary ultimate oil recovery (MSTB)
o output value from hidden nodes

OOIP original oil in place (MSTB)
p index of training set
PERM permeability (mD)
POR porosity (fraction)
PRESS initial reservoir pressure (Pa)
PRUR primary ultimate recovery (MSTB)
RB reservoir barrel
STB stock tank barrel, oil production unit
SW initial water saturation (%)
VIS oil viscosity (Pas)
W weights
x independent variable
y dependent variable
z value of individual transform
d error signal
h learning rate
DIWUR IWUR - PRUR (MSTB)
DIDUR IDUR - IWUR (MSTB)

production data. The approach we take here is statis-
tical. It is based on an oil recovery efficiency database
developed for specific producing formations in a parti-
cular geological basin.

The field data from waterflood units in the Permian
Basin were gathered and used to develop the oil recov-
ery forecast models. The database includes reservoir
and production data of 21 units in the San Andres forma-
tion, and 23 units in the Clearfork formation. Estima-
tion of ultimate and incremental infill drilling recovery
has been a difficult task because of the limited data and
the uncertainties in the independent variables (Malik
et al., 1993; Shao et al., 1994b; Wu et al., 1993, Wu et al.,
1997). Many attempts have been made to develop the
infill drilling oil recovery forecast models with reference
to reservoir rock and fluid properties. Non-linear re-
gression, statistical analysis, and fuzzy logic were used
to analyze the oil recovery data. While these reported
models have improved over the years, they are not en-
tirely satisfactory due to the inexact nature of the data
set and the inherent limitations in the models themselves.

With the development of linear regression (Wu et al.,
1998; Shao et al., 1994a) or statistical analysis (French
et al., 1991) models of infill drilling ultimate recovery (IDUR),
a substantial effort was put into determining which inde-
pendent variables are the most important and what is
the optimum number of the independent variables. Some
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of these independent variables go beyond the basic
reservoir and field properties. Additional parameters
such as the primary ultimate recovery (PRUR) and
the initial waterflood ultimate recovery (IWUR) were
needed to succesfully forecast IDUR (Lu, 1993).

In this work non-parametric regression analysis and
neural network modeling are used to develop forecast
models that improve the degree of consistency and accu-
racy. The non-parametric approach is based on the work
of Breiman and Friedman (1985). Xue and Datta-Gupta
(1996) applied this approach to integrate seismic data
in reservoir characterization. While the non-parametric
regression analysis provided better identification of the
dominant independent variables and more consistent
forecast, it did not improve the variance of forecast
results.

The application of neural networks for modeling non-
linear systems has been improved substantially in recent
years (Nikravesh et al., 1996; Bomberger et al., 1996;
Rogers and Dowla, 1994; Al-Kaabi et al., 1990; Azimi-
Sajadi and Liou, 1989; Johnson and Wichern, 1998). How-
ever, one of the problems that still had to be addressed
was the determination of the dominant variables, and
the optimum number of independent variables. Some
intuitive insight and functional knowledge of the physical
behavior of the system turned out to be helpful for iden-
tifying the dominant independent variables. A non-
parametric regression analysis and the principal compo-
nents and factor analysis of multivariate statistical anal-
ysis were used to identify the dominant independent
variables so we could develop more efficient and realis-
tic neural-networks models.

DATA SET

The input data are shown in Tables 1, 2, 3, and 4.
Tables 1 and 2 list the reservoir and operational pro-
perties of the San Andres units. The dependent varia-
bles are primary ultimate oil recovery (PRUR), initial
waterflood ultimate recovery (IWUR) and infill drilling
ultimate recovery (IDUR). The labels and units of each
variable are referred to the Nomenclature. During the
data analysis and model development, it is found that
IWUR is strongly dependent on PRUR; and IDUR on
PRUR and IWUR. The sequential dependency com-
plicates the development of dependable IDUR models.
Table 3 and 4 list the properties of Clearfork units.

A REVIEW OF THE INFILL DRILLING
RECOVERY MODELS

The updated non-linear standard regression forecast
models for primary ultimate oil recovery (PRUR), initial
waterflooding ultimate oil recovery (IWUR), and infill
drilling ultimate oil recovery (IDUR) of San Andres
and Clearfork units are summarized in Table 5. For
each model, we included the independent variables, the
coefficient of determination and the average absolute
error. Figure 1 shows a comparison of actual and pre-
dicted PRUR. Apparently, the correlation between
predicted values and actual values is good but the aver-
age absolute error is about 23.46%. Figures 2, 3 and 4
show residual plots for the statistical model to predict
PRUR, IWUR, and IDUR. The residual plots do not
have a constant variance and the upward trend suggests
that the models may need additional terms. From these
plots and the average absolute errors, we could conclude
that it was necessary to search other modeling techni-
ques.

NON-PARAMETRIC REGRESSION APPROACH
FOR ESTIMATING OPTIMAL TRANSFOR-
MATIONS FOR MULTIPLE REGRESSIONS

Non-parametric regression is one of the novel
approaches to constructing a suitable model description
from available information. It is developed to alleviate
the problem of parametric regression that often leads
to erroneous results caused by the mismatch between
assumed model structure and the physical relationships
of the actual data. In non-parametric regression we do
not fix a priori the form of the dependency of the depen-
dent variable on the independent variables. In fact, one
of the main results of non-parametric regression is the
form of the relationship.

Non-parametric regression is intended to build a
model in the form,

                                                                       (1)

where, the inverse transformation, f0-1 ,and the
transform sum of the independent variables, z0 ,are
selected to maximize the correlation between the right-
hand and left-hand sides of the relation:

                                                                           (2)

y = f -1 (z0)0

z0 = z1 + z2 + ... + zn
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subject to some constraints. The data transforms is
calculated:

    (3)

In this case the symbol fn(xn) does not necessarily
mean a certain algebraic expression. It is rather a rela-
tionship defined point-wise. The method of alternating
conditional expectations (ACE) (Breiman and Friedman
1985), constructs and modifies the individual transfor-
mations in order to maximize the correlation in the trans-
formed space. Certain trivial constraints (zero mean
and unit variance for the individual transformations)
assure that the solution is almost unique. To make the

ACE algorithm really work, however, one has to imply
some kind of restriction on the smoothness of the indivi-
dual transformations, and this is done somewhat hidden,
the way a certain �smoother� is used to construct and
improve the transformations.

One of the great advantages of non-parametric
regression is that it provides an insight into the influence
of the individual variables. The shape of the point-to-
point transformation is very informative, and the range
of the transformed variable zi tells a lot about the relative
significance of the independent variables.

We used a dummy variable called BASIN with
values 1 for San Andres and 2 for Clearfork. The coef-
ficients of determination and the average absolute errors

    z1 = f1(x1),   z2 = f2(x2), ...,   zn = fn(xn) and
    z0 = f0(y)



CT&F - Ciencia, Tecnología y Futuro  -  Vol. 1  Núm. 5      Dic. 1999

R. SOTO et al.

for PRUR, IWUR, and IDUR are 0.9786, 0.933 and
0.9436, and 21.2%, 28.1% and 29.4 %, respectively.
Figure 5 shows a comparison of actual and predicted
PRUR for non-parametric model using GRACE. Fig-
ure 6 shows the residual plot for IDUR to check for
adequacy of each model. We can see from this plot
that the errors do not have zero mean, neither constant
variances, and the model underestimates the IDUR as
the actual IDUR increases.

THE OILFIELD INTELLIGENCE

The neural network simulator developed in this
research is called Oilfield Intelligence (OI) (Soto, 1998).
The neural network simulator was built in MATLAB, a

high-performance language for technical computing that
integrates computation, visualization, and programming
in an easy-to-use environment.

OI is composed of five main subsystems: Loading
data, preprocessing, architecture design, graphic design,
and inference engine modules. We wrote more than
1,200 lines of programming as M-files using MATLAB
as a platform. Figure 7 illustrates the architecture OI
and Figure 8 shows the graphical user interface (GUI)
with each of these modules.

THE  DOMINANT  INDEPENDENT  VARIABLES

A multivariate statistical analysis was also performed
to determine the dominant independent variables with

10
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reference to that investigated by the non-parametric
regression analysis. Table 6 shows the results of a prin-
cipal component analysis for PRUR. As can be seen,
seven principal components could explain about 90%
of the total variance of the data. To describe the possible
relationships among the variables and determine if there
is any possibility for grouping variables, we used the
concept of factor analysis (Johnson and Wichern 1998).
Table 7 shows an output of the rotated factor loading.
The first factor grouped the primary ultimate oil recovery
(PRUR) with the productive area and the number of
primary recovery wells (NOPW) as indicated by the

loading values. The first factor shows the dependence
of the primary ultimate oil recovery on the productive
area and the number of wells for primary recovery.
According to this factor analysis, we decided to use
area, because of the highest coefficient in factor1, as
independent variable to predict PRUR. The second
factor grouped BASIN, DEPTH and initial reservoir
pressure (PRESS). For this group, we selected BASIN
as independent variable because it was easier for the
neural network to recognize that pattern. The third fac-
tor grouped the API gravity and FVF. The fourth fac-
tor shows that gross thickness (GROSS) has the highest

11
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loading factor. Factors five and six are explained by
water saturation (SW) and porosity (POR) variables
respectively. Similar principal component and factor
analysis was performed for IWUR and IDUR.

Results of the principal component and factor anal-
ysis indicate that the dominant independent variables
for PRUR are: productive area (AREA), BASIN, API
gravity, FVF, gross thickness (GROSS), and initial water
saturation (SW). The dominant independent variables
for IWUR are: productive area, the number of initial
waterflood wells (NOWW), DEPTH, the number of
primary wells (NOPW), API, FVF, net pay (NET),

porosity (POR), permeability (PERM), and viscosity
(VIS). The dominant independent variables for IDUR
are: BASIN, productive area (AREA), and the number
of infill wells (NOIW), PRESS, API, FVF, NET, VIS,
SW, and POR. Those dominant independent variables
were used to develop neural network infill drilling
recovery models.

NEURAL NETWORKS

A neural network is a series of layers with nodes
and weights that represent complex relationships among

12
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input and output variables. The first layer has input
nodes representing the input variables (independent var-
iables) specified by the problem. The node of a hidden
layer uses the sum of the weighted outputs of previous
layer and sigmoid function to provide output for the
nodes in the subsequent hidden layer. The number of
nodes in each layer and the weights are determined by
trials and by optimization. The objective of the neural
network is to obtain optimal weights to give a best value
for the nodes (the dependent variable) of the output layer.

The advantages of the neural network approach are
several. It does not require an explicit functional rela-
tionship between the input and output variables. It can
be trained from past available data to learn and approxi-
mate the nonlinear relationships to any degree of
accuracy. It is applicable to multivariate systems. One
of the significant drawbacks of the neural network
approach is that the input nodes must be specified a
priori. The type of input variables and the optimal
number of input variables can not easily be determined

from neural network analysis.
Performance learning is one of the most important

steps where network parameters are adjusted in an
effort to optimize the performance of the network. Two
steps are involved in this optimization process. The first
step is to define a quantitative measure of network
performance, performance index. It represents a glo-
bal error (E) of the neural network defined as,

                                                                                     (4)

Where the inner summation is over all nodes in the
output layer, and the outer sum is over the number of
the training set. During training, the size of error gener-
ally decreases until it reaches a threshold level.

The second step of the optimization process is to
search the parameter space to reduce the performance
index. A steepest descent algorithm is often used for
the optimization. Mathematically, the weights (W) are
adjusted as follows:

13
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                                                                                             (5)

Where h is learning rate and o is the output value
from hidden nodes and d  is the error signal term
produced by the nodes in the hidden or output layer,

                                                                                                       (6)

Before training the network, the learning rate (h)
for the network must be specified. The new weights
are then used to calculate the new output. The procedure
is repeated until a tolerance is satisfied.

We used a backpropagation algorithm with the
Levenberg-Marquardt procedure as an optimization
method for convergence was used. The 44-sample data
set was divided into three subsets for training set (72%),
validation (14%) and testing (14%). A post-training
evaluation of the performance of the trained neural
networks is carried out by calculation of the errors for
the training, validation, and testing data sets.

The final topology of the neural network for pre-
diction of PRUR has 7 neurons (independent varia-
bles) in the input layer and two hidden layers with 12
and 10 neurons, respectively. For IWUR, the topology
has 9 neurons in the input layer and two hidden layers
with 10 and 6 neurons respectively. The topology of
the neural network for IDUR has 9 neurons in the input
layer, and two hidden layers with 10 and 8 neurons,
respectively. After the neural networks were �trained,�
the weight and bias vectors were incorporated into
Fortran-90 and Visual Basic interfaces so that the results
could be used in a practical manner.

The neural network model showed very good per-
formance for prediction of PRUR, IWUR, and IDUR.

¶ Ed   =  -
¶ (åWold ·o)

17

Wnew  =  Wold + h ·d ·o
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The comparison of calculated and measured PRUR,
IWUR and IDUR are presented in Figures 9 to 11.

The coefficients of determination and the average
absolute errors for PRUR, IWUR, and IDUR are 0.998,

18
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0.992 and 0.9995, and 1.0%, 2.1% and 3.3%, respecti-
vely. Using the same scales of the residual plots for
non-parametric regression models, we plotted residual
plots for the neural network models of PRUR, IWUR,
and IDUR (Figure 10 shows an example). Checking

the adequacy of each model we can see from this plot
that the errors do have zero mean and constant variance.

The dominant independent variables identified for
each model are used to develop the neural network oil
recovery models. A series of sensitivity analysis with

19
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different neural network topologies is performed to
develop the best neural network models. The approach
helped eliminate over-fitting and meaningless depen-
dency of certain independent variables. For the sensitiv-
ity analysis of variable dependency, we made a series
of runs for each basin (San Andres and Clearfork) by
varying the value of each independent variable while
keeping other independent variables at individual mean.
As an example, Figure 12 shows the dependency of
calculated IDUR on the productive area. The monotone-
ly increasing relationship indicates physically mea-
ningful dependency of the variables. Figure 13 shows
the dependency of the calculated IDUR on the number
of infill wells. Similar sensitivity analysis was made for
other independent variables. Table 8 shows a summary
of the oil recovery forecast model performance.

CONCLUSIONS

· The correlation coefficients of the non-linear re-
gression models for predicting the infill ultimate oil
recovery for both San Andres and Clearfork carbon-
ate formations in West Texas apparently are good
but the average absolute error is about 23.46%

· One of the significant constraints for the model devel-
opment is the limited number of field data that are
inexact and often exhibit uncertain relationships.
Principal components and factor analysis help un-
derstand the relative importance of dominant reser-
voir characteristics and operational variables to
improve the modeling.
· The advantage of the non-parametric regression is

that it is easy to use and can quickly provide results
that reveal the dominant independent variables and
relative characteristics of the relationships. The
disadvantage is retaining a large variance of forecast
results for a particular data set. The average absolute
errors for PRUR, IWUR, and IDUR are 21.2%,
28.1% and 29.4%, respectively. The residual plots
showed that the errors do not have zero mean, nor
constant variances.
· Multivariate principal component and factor anal-

yses were employed to develop an effective neural
network. The neural network infill drilling recovery
model is capable of forecasting the oil recovery with
less error variance. The average absolute errors for
PRUR, IWUR, and IDUR are 1.0%, 2.1% and
3.3% respectively. The residual plots showed that
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the errors do have zero mean and constant variances.
· The novel methodology applied in this research can be

used to get better models for a reservoir characterization.
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