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r I Y his work introduces a novel methodology to improve reservoir characterization models. In this
methodology we integrated multivariate statistical analyses, and neural network models for forecasting
the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations

in West Texas. Development of the oil recovery forecast models help us to understand the relative importance of

dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the
database, forecast recoveries for possible new units in similar geological sefting, and make operational (infill
drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We
have developed intelligent software (Soto, 1998), Qilfield Intelligence (Ol), as an engineering tool to improve
the characterization of oil and gas reservoirs. Ol integrates neural networks and multivariate statistical analysis.

It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and

inference engine modules. One of the challenges in this research was to identify the dominant and the optimum

number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net
thickness, gross thickness, formation volume factor, pressure, viscosity, AP gravity, number of wells in initial
waterflooding, number of wells for primary recovery, number of infill wells over the initial waterflooding, PRUR,

IWUR, and IDUR. Multivariate principal component andlysis is used to identify the dominant and the optimum

number of independent variables. We compared the results from neural network models with the non-parametric

approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it
retains a large variance of forecast results for a particular data set. We also used neural network concepts to

develop recovery models. The neural network infill drilling recovery model is capable of forecasting the il

recovery with less error variance compared with non-parametric, fuzzy logic and regression models.
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ste trabajo introduce una metodologia novedosa para mejorar los modelos de caracterizacién de

yacimientos. En esta investigacién se usaron técnicas de estadistica multivariada y redes neuronales

para desarrollar modelos de prediccién de los recobros primarios de aceite (PRUR), recobros de aceite
alinicio de la inyeccién de agua (IWUR) y recobros de aceite debido ala perforacion de pozos de relleno (IDUR)
en yacimientos de carbonatos localizados en el este de Texas. Los modelos desarrollados fueron comparados
con los modelos de regresién no-lineal y con los de regresién no-paramétrica. Uno de los desafios en esta
investigacién fue identificar las variables independientes dominantes y el nimero éptimo de estas. Para ello se
desarrollé un sistema inteligente (Soto, 1998), Qilfield Intelligence (Ol), que integra conceptos de componen-
tes principales, andlisis de factores y redes neuronales. Ol estd compuesto por cinco subsistemas: carga y
preprocesamiento de los datos, disefo de la arquitectura de la red neuronal, disefo gréfico y una mdéquina de
inferencia. El andlisis multivariado de componentes principales permite resolver el problema de dimensionalidad.
Cudntas y cudles variables deberfan usarse en la obtencién de cada modelo. Después se utilizaron las redes
neuronales para desarrollar modelos capaces de predecir los recobros primarios, de inyeccién de agua y
debido a la perforacién de pozos de relleno en las formaciones de carbonato de San Andrés y Clearfork en el
este de Texas. Los coeficientes de correlacién son del orden del 99% con errores absolutos no mayores del 3%
comparados con coeficientes de correlacién del orden de 0.91 y errores absolutos alrededor del 27% de otros
modelos publicados internacionalmente en los Gltimos 15 afos. Las variables consideradas en esta investiga-
cién fueron porosidad, permeabilidad, saturacién de agua, profundidad, drea, espesor total, espesor neto,
factor volumétrico de formacién, presién, viscosidad, gravedad API, nimero de pozos al inicio de la inyeccién
de agua, nUmero de pozos para la recuperacién primaria, nUmero de pozos de relleno al inicio de la inyeccién
de agua, PRUR, IWUR, e IDUR. Obviamente el desarrollo de un modelo en redes neuronales que represente con
alta precisién los datos requiere experiencia del ingeniero para realizar un control de calidad de los datos,
determinar las variables dominantes y optimizar la estructura o topologia de la red neuronal.
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DEVELOPMENT OF INFILL DRILLING RECOVERY MODELS FOR CARBONATE RESERVOIRS

NOMENCLATURE
ACE alternating conditional expectations OOIP  original oil in place (MSTB)
API API gravity of crude oil p index of training set
ARFA  productive area (acres) PERM  permeability (mD)
BASIN  basin index: 1 for San Andres, 2 for Clearfork POR porosity (fraction)
E performance index PRESS initial reservoir pressure (Pa)
f transformed function PRUR  primary ultimate recovery (MSTB)
FIF oil formation volume factor (RB/STB) RB reservoir barrel
GROSS gross pay () STB stock tank barrel, oil production unit
IDUR  infill drilling ultimate oil recovery (MSTB) SwW initial water saturation (%)
IWUR  initial waterflood ultimate oil Recovery (MSTB) VIS oil viscosity (Pas)
k node index of output layer w weights
n index of independent variables X independent variable
NET net pay (m) y dependent variable
NOIW  number of wells after infill drilling z value of individual transform
NOPW  number of wells for primary Recovery o error signal
NOWW  number of wells for initial Waterflooding n learning rate

PRUR  primary ultimate oil recovery (MSTB) AIWUR TWUR - PRUR (MSTB)
0 output value from hidden nodes AIDUR IDUR-IWUR (MSTB)
INTRODUCTION production data. The approach we take here is statis-

The amount of oil that can be recovered from an oil
reservoir is dependent on the reservoir characteristics,
recovery method, number of wells, and operations
efficiency. Waterflooding is often used as a secondary
recovery process after the reservoir has been produced
during primary recovery. Since most reservoirs are heter-
ogeneous, infill drilling after an initial water flood permits
production of oil from parts of the reservoir that might
otherwise have been bypassed (Wu ef al. 1992; Wu et
al., 1988; Shao er al., 1994a; French er al., 1991).
Researchers and engineers have shown that the infill
drilling in the West Texas carbonate reservoirs has
indeed accelerated and increased oil recovery (Lu et al.,
1993, 1994). However, the dominant mechanisms and
parameters (independent variables) that affect the oil
recovery are not fully identified or may be subjected to
varying degrees of uncertainty. To forecast or predict
infill drilling recovery efficiency of an individual unit or
a reservoir is a difficult task for most reservoir-engi-
neering professionals.

Many approaches are used to evaluate infill drilling
recovery efficiency. One is based on unit recovery effi-
ciency and reservoir analysis, plus the reservoir engi-
neer’s experience and intuition. A more elaborate
approach is the use of a “reservoir simulator”, which
requires detailed and yet uncertain input reservoir and
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tical. It is based on an oil recovery efficiency database
developed for specific producing formations in a parti-
cular geological basin.

The field data from waterflood units in the Permian
Basin were gathered and used to develop the oil recov-
ery forecast models. The database includes reservoir
and production data of 21 units in the San Andres forma-
tion, and 23 units in the Clearfork formation. Estima-
tion of ultimate and incremental infill drilling recovery
has been a difficult task because of the limited data and
the uncertainties in the independent variables (Malik
etal., 1993; Shao etal., 1994b; Wu et al., 1993, Wu et al.,
1997). Many attempts have been made to develop the
infill drilling oil recovery forecast models with reference
to reservoir rock and fluid properties. Non-linear re-
gression, statistical analysis, and fuzzy logic were used
to analyze the oil recovery data. While these reported
models have improved over the years, they are not en-
tirely satisfactory due to the inexact nature of the data
set and the inherent limitations in the models themselves.

With the development of linear regression (Wu et al.,
1998; Shao et al., 1994a) or statistical analysis (French
etal., 1991) models of infill drilling ultimate recovery (IDUR),
a substantial effort was put into determining which inde-
pendent variables are the most important and what is
the optimum number of the independent variables. Some
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of these independent variables go beyond the basic
reservoir and field properties. Additional parameters
such as the primary ultimate recovery (PRUR) and
the initial waterflood ultimate recovery (IWUR) were
needed to succesfully forecast IDUR (Lu, 1993).

In this work non-parametric regression analysis and
neural network modeling are used to develop forecast
models that improve the degree of consistency and accu-
racy. The non-parametric approach is based on the work
of Breiman and Friedman (1985). Xue and Datta-Gupta
(1996) applied this approach to integrate seismic data
in reservoir characterization. While the non-parametric
regression analysis provided better identification of the
dominant independent variables and more consistent
forecast, it did not improve the variance of forecast
results.

The application of neural networks for modeling non-
linear systems has been improved substantially in recent
years (Nikravesh ef al., 1996; Bomberger et al., 1996;
Rogers and Dowla, 1994; Al-Kaabi ez al., 1990; Azimi-
Sajadi and Liou, 1989; Johnson and Wichern, 1998). How-
ever, one of the problems that still had to be addressed
was the determination of the dominant variables, and
the optimum number of independent variables. Some
intuitive insight and functional knowledge of the physical
behavior of the system turned out to be helpful for iden-
tifying the dominant independent variables. A non-
parametric regression analysis and the principal compo-
nents and factor analysis of multivariate statistical anal-
ysis were used to identify the dominant independent
variables so we could develop more efficient and realis-
tic neural-networks models.

DATA SET

The input data are shown in Tables 1, 2, 3, and 4.
Tables 1 and 2 list the reservoir and operational pro-
perties of the San Andres units. The dependent varia-
bles are primary ultimate oil recovery (PRUR), initial
waterflood ultimate recovery (IWUR) and infill drilling
ultimate recovery (IDUR). The labels and units of each
variable are referred to the Nomenclature. During the
data analysis and model development, it is found that
IWUR is strongly dependent on PRUR; and IDUR on
PRUR and IWUR. The sequential dependency com-
plicates the development of dependable IDUR models.
Table 3 and 4 list the properties of Clearfork units.

A REVIEW OF THE INFILL DRILLING
RECOVERY MODELS

The updated non-linear standard regression forecast
models for primary ultimate oil recovery (PRUR), initial
waterflooding ultimate oil recovery IWUR), and infill
drilling ultimate oil recovery (IDUR) of San Andres
and Clearfork units are summarized in Table 5. For
each model, we included the independent variables, the
coefficient of determination and the average absolute
error. Figure 1 shows a comparison of actual and pre-
dicted PRUR. Apparently, the correlation between
predicted values and actual values is good but the aver-
age absolute error is about 23.46%. Figures 2, 3 and 4
show residual plots for the statistical model to predict
PRUR, IWUR, and IDUR. The residual plots do not
have a constant variance and the upward trend suggests
that the models may need additional terms. From these
plots and the average absolute errors, we could conclude
that it was necessary to search other modeling techni-
ques.

NON-PARAMETRIC REGRESSION APPROACH
FOR ESTIMATING OPTIMAL TRANSFOR-
MATIONS FOR MULTIPLE REGRESSIONS

Non-parametric regression is one of the novel
approaches to constructing a suitable model description
from available information. It is developed to alleviate
the problem of parametric regression that often leads
to erroneous results caused by the mismatch between
assumed model structure and the physical relationships
of the actual data. In non-parametric regression we do
not fix a priori the form of the dependency of the depen-
dent variable on the independent variables. In fact, one
of the main results of non-parametric regression is the
form of the relationship.

Non-parametric regression is intended to build a
model in the form,

y=1"1(z9) (1)

where, the inverse transformation, fO'I ,and the
transform sum of the independent variables, z, .are
selected to maximize the correlation between the right-
hand and left-hand sides of the relation:

ZOZZ]+Z2+...+Zn (2)
Vol. 1T Nim. 5

CT&F - Ciencia, Tecnologia y Futuro - Dic. 1999



DEVELOPMENT OF INFILL DRILLING RECOVERY MODELS FOR CARBONATE RESERVOIRS

Table 1. San Andres Data |

OO0IP Area Depth NET GROSS POR SW Vis Fvf Press Perm

Field / unit API
MSTB  km? m m m % % Pas-10° RB/STB MPa mD
1 ADAIR "SA" 169,439 2160  1463.04 1524 3200 141 350 34 1.6 1.12 12.93 37
2 FUHRAMN M/BL10 "GBSA" 78,383 2482  1310.64 1250 76.20 7.7 400 31 3.5 1.15 11.08 2.4
3 FUHRAMN M/BL9 "GBSA" 55,939 1598 13856.36 1250 76.20 7.0 300 29 3.3 1.10 11.03 4.0
4 JOHNSON /'GB" "SA" 63,003 1505 126492 1524  39.62 6.7 21.8 33 36 1.20 11.00 53
5 JOHNSON /'AB" "SA" 18,247 340 124968 1829 4511 80 300 39 1.3 1.20 17.24 1.8
LEVELLA/N CEN UN "SA" 131,981 4553 144780 945 21.34 80 250 31 2.5 1.23 11.65 1.8
7 MABEE/JE MABEE 'A"'SA" 279,112 5273 143256 1219 1524 105 290 32 2.4 1.08 13.13 1.5
8 MEANS "SA" 376,693 5798 1310.64 1676 91.44 90 288 29 6.2 1.04 1276 29.0
9 OWNBY "SA" 47,508 1198 158496 975 2591 141 381 32 1.5 1.35 12.41 4.5
10 OWNBY/BL GILSTRAP "SA" 3,643 065 159563 1219 2591 142 380 31 2.0 1.20 12.41 4.5
11 SABLE "SA" 33,331 542 158496 17.37 2408 90 250 32 2.2 1.20 10.69 1.5
12 SEMINLE "SA" 1°154,378 63.583 161544 3840 4694 120 16.0 35 1.1 1.34 1393 312
13 SHAFTER "SA" 184,381 44,84 131064 16.76  60.96 65 250 32 1.3 1.25 12.86 50
14 SLAUGHTER/IGOE SM "SA" 63,155 860 1502.66 1494 3658 112 141 32 14 1.23 11.79 50
15 TRIPLE-N"GB" 18,683 826 131826 6.10 6.10 121 400 32 1.8 1.23 14.68 6.6
16 WASSON/BENNET "SA" 394,925 28.44 155448 39.62 26365 100 27.0 33 1.6 1.31 12.44 1.7
17 WASSON/CORNELL "SA" 182,409 7.78 149352 67.06 92.96 85 1560 33 1.3 1.30 12.76 3.7
18 WASSON/DENVER "SA" 2°172,316 103.21 1463.04 4298 8839 120 150 33 1.8 1.31 12.44 50
19 WASSON/REBORTS "SA" 394,971 5494 149352 20.73 77.72 85 150 83 1.6 1.31 12.44 50
20 WASSON/WILLARD "SA" 699,419 54.07 155448 39.62 60.96 85 200 32 1.8 1.31 12.44 1.5
21 WEST SEMINOLE "SA” 196,021 1473 1558.14 3597 64.01 99 180 32 1.0 1.38 1393 20.8

subject to some constraints. The data transforms is  ACE algorithm really work, however, one has to imply

calculated: some kind of restriction on the smoothness of the indivi-
B B B J dual transformations, and this is done somewhat hidden,
21 =060, 2= 0 2y =l an the way a certain “smoother” is used to construct and

zg =fo() 3)

improve the transformations.

One of the great advantages of non-parametric
regression is that it provides an insight into the influence
of the individual variables. The shape of the point-to-

In this case the symbol f,(x,) does not necessarily
mean a certain algebraic expression. It is rather a rela-
tionship defined point-wise. The method of alternating

conditional expectations (ACE) (Breiman and Friedman
1985), constructs and modifies the individual transfor-
mations in order to maximize the correlation in the trans-
formed space. Certain trivial constraints (zero mean
and unit variance for the individual transformations)
assure that the solution is almost unique. To make the
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point transformation is very informative, and the range
of the transformed variable z; tells a lot about the relative
significance of the independent variables.

We used a dummy variable called BASIN with
values 1 for San Andres and 2 for Clearfork. The coef-
ficients of determination and the average absolute errors
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Table 2. San Andres Data |l

PRUR
Field / unit NOPW

MSTB

1 ADAIR "SA" 109 21,398
2 FUHRAMN MASHO/BL10 "GBSA" 108 7,733
3 FUHRAMN MASHO/BL9 "GBSA" 77 6,354
4 JOHNSON /"GB" "SA! 83 9,690
5 JOHNSON /"AB" "SA" 15 1,648
6 LEVELLAND/N CEN UN "SA" 268 18,112
7 MABEE/JE MABEE 'A" 'SA" 290 34,316
8 MEANS "SA" 299 64,477
9 OWNBY "SA" 49 6,224
10 OWNBY/BL GILSTRAP "SA" 4 389
11 SABLE "SA" 37 4,209
12 SEMINLE "SA" 327 196,265
13 SHAFTER "SA" 258 21,039
14 SLAUGHTER/IGOE SMITH "SA" 42 9,044
15 TRIPLE-N "GB" 23 2,096
16 WASSON/BENNET "SA" 213 36,325
17 WASSON/CORNELL "SA 71 21,718
18 WASSON/DENVER "SA" 386 207,826
19 WASSON/REBORTS "SA" 194 45,491
20 WASSON/WILLARD "SA" 223 59,029
21 WEST SEMINOLE "SA” 65 10,073

IWUR AIWUR IDUR AIDUR

NOwWwW NOIW
MSTB MSTB MSTB MSTB
130 44,352 22,954 178 65,401 21,049
118 9,957 2,224 133 10,5613 556
136 8,435 2,081 158 10,343 1,908
116 15,628 5,838 149 17,413 1,885
38 3,842 2,294 93 5,812 1,970
363 33,947 15,835 489 57,198 23,251
592 74,618 40,302 620 88,786 14,168
398 127,612 63,035 754 151,695 24,183
59 10,886 4,662 72 16,175 5,289
5 1,257 868 8 1,593 336
64 9,203 4,994 71 11,094 1,891
523 448,771 252,506 604 537,711 88,940
326 32,961 11,922 369 35,201 2,240
82 25,786 16,742 97 27,732 1,946
40 4,966 2,870 73 6,876 1,910
293 97,279 60,954 468 119,502 22,223
92 64,338 42,620 128 67,765 3,427
593 383,090 175,264 1,417 943,060 559,970
377 101,171 55,680 424 111,600 10,429
304 102,844 43,815 461 178,31 75,468
93 28,537 18,464 162 240,421 11,884

for PRUR, IWUR, and IDUR are 0.9786, 0.933 and
0.9436, and 21.2%, 28.1% and 29.4 %, respectively.
Figure 5 shows a comparison of actual and predicted
PRUR for non-parametric model using GRACE. Fig-
ure 6 shows the residual plot for IDUR to check for
adequacy of each model. We can see from this plot
that the errors do not have zero mean, neither constant
variances, and the model underestimates the IDUR as
the actual IDUR increases.

THE OILFIELD INTELLIGENCE

The neural network simulator developed in this
research is called Oilfield Intelligence (OI) (Soto, 1998).
The neural network simulator was built in MATLAB, a

10

high-performance language for technical computing that
integrates computation, visualization, and programming
in an easy-to-use environment.

OI is composed of five main subsystems: Loading
data, preprocessing, architecture design, graphic design,
and inference engine modules. We wrote more than
1,200 lines of programming as M-files using MATLAB
as a platform. Figure 7 illustrates the architecture OI
and Figure 8 shows the graphical user interface (GUI)
with each of these modules.

THE DOMINANT INDEPENDENT VARIABLES

A multivariate statistical analysis was also performed
to determine the dominant independent variables with
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DEVELOPMENT OF INFILL DRILLING RECOVERY MODELS FOR

CARBONATE RESERVOIRS

Clearfork Data |

Table 3.
OOIP Area Depth NET
Field / unit

MSTB km? m m
1 DIAMOND M/JACK 3,004 1.29 966.22 10.36
2 DIAMOND M/McLAAC 1 6,574 2.91 966.22  9.75
3 DOLLARHIDE 'AB' 72,873 10.65 1981.20 20.73
4 FLANAGAN/CLEARFORK 81,812 1963 194462 9.75
5 FULLERTON ‘032,853 11955 204216 26.52
6 GOLDSMITH 5600/CA 610,244 6151 1706.88 22.86
7 GOLDSMITH/LANDRETH 119,967 3162 1691.64 11.89
8 LEE HARRISON/WEST 20,698 3.72 147828 13.41
9 MONAHANS 111,620 19.02  1402.08 18.29
10 NORTH RILEY "CF" 140,362 2817  1920.24 19.81
11 OWNBY/UCFU 39,283 8.63  1988.82 23.77
12 SMYER/EAST 80,445 12,63 204216 25.60
13 PRENTICE /6700/6700 CLF 161,577 2763 204216 22.25
14 PRENTICE/NE 51,362 8.09 196596 30.48
15 ROBERTSON/NORTH 274,757 19.00 1767.84 7193
16 RUSSELL/7000 CFU 209,836 34.44  2240.28 30.78
17 SMYER/EAST 63,419 17.85 1767.84 10.97
18 SMYER/ELLWOOD "A" 81,877 17.48 182575 11.89
19 WASSON 72/GAINES 108,446 17.81  1729.74 2591
20 WASSON 72/GIBSON 151,836 1522 201168 51.51
21 WASSON 72/SOUTH 240,354 2008  1950.72 41.76
22 WASSON 72/YOAKUM 80,032 29.95 1729.74 11.28
23 WASSON NE CF/NORTH 69,224 17.48  1950.72 24.69

GROSS POR SW Vis Fvf Press Perm
m % % A Pas10° RB/STB Mpa mD
3200 7.0 400 305 24 118 11.03 80
1981 70 380 305 24 118 827 30

10881 89 180 370 06 139 1993 84

14265 114 249 322 17 126 1293 52

15240 100 223 420 05 150 2027 30

10668 150 31.0 380 07 150 1606 280

10516 96 260 390 05 140 1606 26
2560 125 420 250 87 110 1379 40

182.88 100 250 37.0 8.1 147 1517 20
20,12 7.7 330320 26 129 1903 120
7894 50 300 270 17 115 1655 1.2

21336 70 350 290 18 115 1655 7.7

21214 82 414 280 17 115 1655 3.0

11278 62 386 280 1.7 115 1655 30

39624 63 300 310 12 138 2034 07
9357 53 240 347 08 128 1793 1.0
3353 83 330 265 58 108 1448 34
5304 83 200 250 5.1 106 1281 50

23165 64 270 350 1.0 125 1793 10

22098 55 300 310 15 125 1862 05

38252 77 260320 14 125 1793 55

10241 64 270 350 1.0 124 1793 05
7132 51 350 300 15 130 1822 0.2

reference to that investigated by the non-parametric
regression analysis. Table 6 shows the results of a prin-
cipal component analysis for PRUR. As can be seen,
seven principal components could explain about 90%
of the total variance of the data. To describe the possible
relationships among the variables and determine if there
is any possibility for grouping variables, we used the
concept of factor analysis (Johnson and Wichern 1998).
Table 7 shows an output of the rotated factor loading,.
The first factor grouped the primary ultimate oil recovery
(PRUR) with the productive area and the number of
primary recovery wells (NOPW) as indicated by the
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loading values. The first factor shows the dependence
of the primary ultimate oil recovery on the productive
arca and the number of wells for primary recovery.
According to this factor analysis, we decided to use
area, because of the highest coefficient in factorl, as
independent variable to predict PRUR. The second
factor grouped BASIN, DEPTH and initial reservoir
pressure (PRESS). For this group, we selected BASIN
as independent variable because it was easier for the
neural network to recognize that pattern. The third fac-
tor grouped the API gravity and FVF. The fourth fac-
tor shows that gross thickness (GROSS) has the highest

11
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Table 4. Clearfork Data |l

PRUR

Field / unit NOPW
MSTB
1 DIAMOND M/JACK 5 346
2 DIAMOND M/McLA AC 1 i 513
3 DOLLARHIDE 'AB' 7 13,663
4 FLANAGAN/CLEARFORK CONS 93 12,307
5 FULLERTON 739 119,055
GOLDSMITH 5600/CA GLDSMITH 461 64,109
7 GOLDSMITH/LANDRETH (2) 191 28,936
8 LEE HARRISON/WEST 12 2,212
9 MONAHANS 63 5,245
10 NORTH RILEY "CF" 131 18,378
1 OWNBY/UCFU 42 3,729
12 SMYER/EAST 73 18,861
13 PRENTICE /6700/6700 CLFK 129 33,200
14 PRENTICE/NE 50 6,554
15 ROBERTSON/NORTH 104 27,841
16 RUSSELL/7000 CFU 185 38,902
17 SMYER/EAST 52 4,949
18 SMYER/ELLWOOD "A" 108 8,191
19 WASSON 72/GAINES 105 17,563
20 WASSON 72/GIBSON 85 12,798
21 WASSON 72/SOUTH 121 41,098
22 WASSON 72/YOAKUM 91 13,697
23 WASSON NE CF/NORTH 82 9,986

IWUR AIWUR IDUR AIDUR

NOWW NOIW
MSTB MSTB MSTB MSTB
9 585 239 17 786 201
18 620 107 33 851 231
80 25,511 11,848 175 37,070 11,560
105 27,333 15,026 110 29,987 2,653
821 217,634 98,579 1,136 326,222 107,588
661 119,520 55,411 800 121,038 1,618
195 46,281 17,345 260 65,440 19,159
19 2,861 649 26 3,513 652
124 12,176 6,931 235 20,933 8,757
139 23,718 5,340 232 38,688 14,970
43 7,079 3,351 69 9,472 2,393
74 24,068 5,208 95 36,601 12,533
139 77,712 44,512 273 99,519 21,807
69 16,322 9,768 125 23,696 7,374
124 35,682 7,841 361 67,538 31,856
198 54,866 15,964 304 62,680 7,814
100 14,507 9,657 134 14,692 86
135 20,365 12,174 154 26,402 6,037
107 21,869 4,305 138 23,655 1,787
96 14,968 2,170 118 21,973 7,004
171 59,401 18,303 184 73,063 13,662
130 15,621 1,924 145 17,662 2,040
96 13,400 3,414 117 17,212 3,812

loading factor. Factors five and six are explained by
water saturation (SW) and porosity (POR) variables
respectively. Similar principal component and factor
analysis was performed for IWUR and IDUR.

Results of the principal component and factor anal-
ysis indicate that the dominant independent variables
for PRUR are: productive arca (AREA), BASIN, API
gravity, FVF, gross thickness (GROSS), and initial water
saturation (SW). The dominant independent variables
for IWUR are: productive area, the number of initial
waterflood wells (NOWW), DEPTH, the number of
primary wells (NOPW), API, FVF, net pay (NET),

12

porosity (POR), permeability (PERM), and viscosity
(VIS). The dominant independent variables for IDUR
are: BASIN, productive area (AREA), and the number
of infill wells (NOIW), PRESS, API, FVF, NET, VIS,
SW, and POR. Those dominant independent variables
were used to develop neural network infill drilling
recovery models.

NEURAL NETWORKS

A neural network is a series of layers with nodes
and weights that represent complex relationships among
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Table 5. Current statistical oil recovery models of San Andres and Clearfork units (Soto, 1998)

0.721305

0.731893

-0.624600

-0.386933

0.457180

0.232663

. Average absolute
Parameter Model equation R square error (%)

PRUR = 10—3.()]2258 (OO[P)()‘357853 (NOPVV) (NET)()_371451

PRUR san Andres (100—SW)1'120312 (VIS)0.238351 0.9823 25.71
PRUR = 10—3,21592 (OOIP)0.860267 (DEPTH) (PERM)—().()QISZZ o o

PRUR cieario B 9784 4

Clearfork (POR)0.800064(FVF) 3.29715 (V[S)

IWUR 521 Angres WUR = 1073 (pRUR) "7 (wsw) (100 -sw)" """ 0.9912 32.73
IWUR = 10—3.7981 (PRUR)().497429 (WSW)’ (DEPTH) 0.751919 00850 -

IWUR Giearfor 0.11601 0.18648 ' 78

(PERM) (RGN)

IDUR = 10—4.882()35 (IWUR)0.877953 (INOIW) (DEPTH)1.461133

IDUR San Andres (GROSS)—().OQJ'QOZ 0.9929 22.27

IDUR oo ur = 10"""" awur) P anvorm) "7 0.9906 26.30

input and output variables. The first layer has input
nodes representing the input variables (independent var-
iables) specified by the problem. The node of a hidden
layer uses the sum of the weighted outputs of previous
layer and sigmoid function to provide output for the
nodes in the subsequent hidden layer. The number of
nodes in each layer and the weights are determined by
trials and by optimization. The objective of the neural
network is to obtain optimal weights to give a best value
for the nodes (the dependent variable) of the output layer.

The advantages of the neural network approach are
several. It does not require an explicit functional rela-
tionship between the input and output variables. It can
be trained from past available data to learn and approxi-
mate the nonlinear relationships to any degree of
accuracy. It is applicable to multivariate systems. One
of the significant drawbacks of the neural network
approach is that the input nodes must be specified a
priori. The type of input variables and the optimal
number of input variables can not easily be determined
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from neural network analysis.

Performance learning is one of the most important
steps where network parameters are adjusted in an
effort to optimize the performance of the network. Two
steps are involved in this optimization process. The first
step is to define a quantitative measure of network
performance, performance index. It represents a glo-
bal error (E) of the neural network defined as,

E= 2 205" = ypeh 4
p

Where the inner summation is over all nodes in the
output layer, and the outer sum is over the number of
the training set. During training, the size of error gener-
ally decreases until it reaches a threshold level.

The second step of the optimization process is to
search the parameter space to reduce the performance
index. A steepest descent algorithm is often used for
the optimization. Mathematically, the weights (W) are
adjusted as follows:
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Figure 1. Comparison of calculated and measured PRUR for non-linear regression model.
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Figure 2. Residual plot for the non-linear regression model to predict PRUR
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Figure 3. Residual plot for non-linear regression model to predict IWUR.
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Figure 4. Residual plot for the non-linear regression model to predict IDUR
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Figure 6. Residual plot for the non-parametric pegression model using GRACE to predict IDUR
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Figure 7. Architecture of oilfield intelligence
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Figure 8. Graphical user interface of Oilfield Intelligence

Whew = Woiat m-6-0 )
Where 7 is learning rate and o is the output value

from hidden nodes and & is the error signal term

produced by the nodes in the hidden or output layer,

§:_L (6)

OQ_ Wy 0)
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Before training the network, the learning rate (77)
for the network must be specified. The new weights
are then used to calculate the new output. The procedure
is repeated until a tolerance is satisfied.

We used a backpropagation algorithm with the
Levenberg-Marquardt procedure as an optimization
method for convergence was used. The 44-sample data
set was divided into three subsets for training set (72%),
validation (14%) and testing (14%). A post-training
evaluation of the performance of the trained neural
networks is carried out by calculation of the errors for
the training, validation, and testing data sets.

The final topology of the neural network for pre-
diction of PRUR has 7 neurons (independent varia-
bles) in the input layer and two hidden layers with 12
and 10 neurons, respectively. For INUR, the topology
has 9 neurons in the input layer and two hidden layers
with 10 and 6 neurons respectively. The topology of
the neural network for IDUR has 9 neurons in the input
layer, and two hidden layers with 10 and 8 neurons,
respectively. After the neural networks were “trained,”
the weight and bias vectors were incorporated into
Fortran-90 and Visual Basic interfaces so that the results
could be used in a practical manner.

The neural network model showed very good per-
formance for prediction of PRUR, IWUR, and IDUR.

17
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Table 6. PRUR principal components

Eigenvalue Difference Proportion Cumulative
PRINT 1.37501 0.48509 0.35456 0.35456
PRIN2 0.88991 0.49477 0.22947 0.58404
PRINS 0.39514 0.12847 0.10189 0.68593
PRIN4 0.26667 0.05136 0.06876 0.75469
PRINS 0.21531 0.02799 0.05552 0.81021
PRING 0.18732 0.02899 0.04830 0.85851
PRIN7 0.15832 0.02338 0.04083 0.89934
PRING 0.13494 0.04149 0.03480 0.93414
PRIN9 0.09346 0.02555 0.02410 0.95824
PRINTO 0.06791 0.02022 0.01751 0.97575
PRINT1 0.04769 0.02118 0.01230 0.98804
PRIN12 0.02651 0.00981 0.00684 0.99488
PRIN13 0.01669 0.01352 0.00431 0.99918
PRIN14 0.00317 0.00000 0.00082 1.00000

Table 7. PRUR rotated factor loadings

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5 FACTOR 6 FACTOR 7 FACTOR 8
BASIN -0.01042 0.56157 0.13817 -0.11926 0.31755 0.09918 0.11858 -0.18657
AREA 0.46452 -0.00983 -0.06421 -0.07218 0.06722 0.08984 -0.17765 -0.09534
NET -0.06270 -0.14476 -0.11316 0.61773 -0.05406 -0.08267 0.06656 0.05867
POR -0.06108 0.08698 -0.00592 0.06310 0.05034 1.02195 -0.13180 0.01320
SW 0.10311 -0.07040 -0.03856 0.11391 0.97638 -0.18867 0.02639 0.06323
API -0.03532 -0.08297 0.58774 -0.12251 0.00345 0.08644 -0.04098 -0.13480
VIS 0.03059 0.04800 0.05336 0.06179 0.00214 -0.17756 -0.06160 0.49233
FVF -0.14050 0.01949 0.51102 0.08040 0.17243 -0.08363 0.01365 0.12214
DEPTH 0.00448 0.56556 -0.34269 -0.15889 -0.20299 -0.36244 -0.12011 0.40166
GROSS 0.01756 -0.07490 0.07738 0.79419 0.18190 0.28622 -0.09721 0.03603
PRESS -0.01853 0.32704 0.08920 -0.03770 -0.05751 0.06433 0.09882 -0.04928
PERM -0.10414 0.04018 -0.00424 -0.01917 -0.04296 0.04682 0.32101 -0.17247
NOPW 0.42865 0.00465 0.00249 -0.07670 0.02886 0.18458 -0.09693 -0.10831
PRUR 0.31515 -0.030056 -0.18314 0.12197 -0.03446 0.00673 0.07818 0.05876

The comparison of calculated and measured PRUR,  The coefficients of determination and the average
IWUR and IDUR are presented in Figures 9 to 11. absolute errors for PRUR, IWUR, and IDUR are 0.998,
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Figure 9. Calculated PRUR from neural network model versus actual PRUR
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Figure 10. Calculated IWUR from neural network model versus actual IWUR

0.992 and 0.9995, and 1.0%, 2.1% and 3.3%, respecti-  the adequacy of cach model we can see from this plot
vely. Using the same scales of the residual plots for  that the errors do have zero mean and constant variance.
non-parametric regression models, we plotted residual The dominant independent variables identified for
plots for the neural network models of PRUR, IWUR,  each model are used to develop the neural network oil
and IDUR (Figure 10 shows an example). Checking recovery models. A series of sensitivity analysis with
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Figure 11. Calculated IDUR from neural network model versus actual IDUR

different neural network topologies is performed to
develop the best neural network models. The approach
helped eliminate over-fitting and meaningless depen-
dency of certain independent variables. For the sensitiv-
ity analysis of variable dependency, we made a series
of runs for each basin (San Andres and Clearfork) by
varying the value of each independent variable while
keeping other independent variables at individual mean.
As an example, Figure 12 shows the dependency of
calculated IDUR on the productive area. The monotone-
ly increasing relationship indicates physically mea-
ningful dependency of the variables. Figure 13 shows
the dependency of the calculated IDUR on the number
of infill wells. Similar sensitivity analysis was made for
other independent variables. Table 8 shows a summary
of the oil recovery forecast model performance.

CONCLUSIONS

The correlation coefficients of the non-linear re-
gression models for predicting the infill ultimate oil
recovery for both San Andres and Clearfork carbon-
ate formations in West Texas apparently are good
but the average absolute error is about 23.46%

20

One of the significant constraints for the model devel-
opment is the limited number of field data that are
inexact and often exhibit uncertain relationships.
Principal components and factor analysis help un-
derstand the relative importance of dominant reser-
voir characteristics and operational variables to
improve the modeling.

The advantage of the non-parametric regression is
that it is easy to use and can quickly provide results
that reveal the dominant independent variables and
relative characteristics of the relationships. The
disadvantage is retaining a large variance of forecast
results for a particular data set. The average absolute
errors for PRUR, IWUR, and IDUR are 21.2%,
28.1% and 29.4%, respectively. The residual plots
showed that the errors do not have zero mean, nor
constant variances.

Multivariate principal component and factor anal-
yses were employed to develop an effective neural
network. The neural network infill drilling recovery
model is capable of forecasting the oil recovery with
less error variance. The average absolute errors for
PRUR, IWUR, and IDUR are 1.0%, 2.1% and

2

3.3% respectively. The residual plots showed that
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Figure 12. Effect of productive area on IDUR predicted by the neural network model for San Andres units
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Table 8. Summary of oil recovery forecast model performance (Wu, 1997)

Method

Standard Regression

Standard Regression

Standard Regression

Standard Regression

Standard Regression

Standard Regression

Neural Network

Neural Network

Parameter

PRUR San Andres

PRUR Clearfork

IWUR San Andres

|WURC\%H'TQ'<

IDUR San Andres

IDUR Clearfork

PRUR San Andresand Clearfork

WUR San Andresand Clearfork

Neural Network IDUR san andresand Cleariork

Independent Correlation coeff Average
vaﬁables between measured absolute
and calc parameter Error%
Area, Porosity, Sw, Nye,
NOPW, Viscosity 09226 24.49
Area, Porosity, Sw, h, Depth,
Viscosity, Permeability, FVF, 09472 2151
PRUR, WSW, Sw 0.9056 3417
PRUR, NOWW, Depth, hgoss,
Permeability, et 0.9682 17.01
IWUR, NOIW, Depth, Gross 0.9649 21.20
IWUR, NOIW, 0.9221 26.30
Area, Basin, API
FVF. Sw, Porosity 0999 10
Area, NOWW, PRUR, AP,
FVF, hnet, Porosity, Sw, 0.998 2.1
Viscosity, Basin
Area, NOIW, IWUR, Basin, AP,
FVF, hney, Viscosity, Sw, Porosity 0.999 33

the errors do have zero mean and constant variances.

The novel methodology applied in this research can be
used to get better models for a reservoir characterization.

ACKNOWLEDGMENT

This material is based in part upon work supported
by the Texas Advanced Technology Program under
Grant No. ATP-036327-066 1998. The Instituto Co-
lombiano del Petroleo support for part of the works is
also appreciated. We would like to acknowledge Peter
Valko’s contribution to the development and application
of multiple forecast models.

REFERENCES

Al-Kaabi, A.U., McVay, D.A. and Lee, W. J., 1990. “Using an

22

Expert System to Identify a Well-Test Interpretation
Model”, J. Pet. Tech. (May): 654 - 661.

Azimi-Sajadi, M. and Liou, R. J., 1989. “Fast Learning Process
of Multilayer Neural Networks Using Recursive Least
Squares Method”, IEEE Trans. On Sig. Proc., 40 (2): 446
-449.

Bomberger, J. D., Seborg, D. E., Lightbody, G., and Irwin, G.
W., 1996. “Experimental Evaluation of Neural Nonlinear
Modeling™, presented at the Chemical Process Control
17, Tahoe City, CA. (26 January).

Breiman, L. and Friedman, J. H., 1985. “Estimating Opti-
mal Transformations for Multiple Regression and Corre-
lation”, J. of the American Statistical Associations
(September): 580.

French, R. L., Brimhall, R. M., and Wu, C. H., 1991. “A Statis-
tical and Economic Analysis of Incremental Waterflood
Infill Drilling Recoveries in West Texas Carbonate Reser-

CT&F - Ciencia, Tecnologia y Futuro - Vol. T Nom.5  Dic. 1999



DEVELOPMENT OF INFILL DRILLING RECOVERY MODELS FOR CARBONATE RESERVOIRS

voirs,” SPE 22624 presented at the SPE Annual Techni-
cal Conferences and Exhibition, Dallas (Oct. 6 -9).

Johnson, R. A. and Wichern, D. W. 1998. Applied Multiva-
riate Statistical Analysis, Fourth Edition, Printice-Hall,
Inc., Upper Saddle River, NJ.

Lu, G F., Brimhall, R. M. and Wu, C. H., 1993. “Geographical
Distribution and Forecast Models of Infill Drilling Oil
Recovery for Permian Basin Carbonate Reservoir”, SPE
16503 poster session at the nnual Technical Conference
and Exhibition, Houston (Oct. 3 - 6).

Lu, GF., Jagoe, B. L. and Wu, C. H., 1994. “Technical Factors
Useful for Screening Reservoirs for Water-flood Infill
Drilling”, SPE 27660 (poster) presented at the Permian
Basin Oil & Gas Conference, Midland (March 16 - 18)

Malik, Z. A, Silva, B. A., Brimhall, R. M. and Wu, C. H., 1993.
“An Integrated Approach to Characterize Low Permea-
bility Reservoirs Connectivity to Optimize Waterflood
Infill Drilling”, SPE 25853 presented at the Joint Rocky
Mountain Regional and Low Permeability Reservoirs
Symposium, Denver (April 26 - 28).

Nikravesh, M., Kovscek, A. R., Johnston, R. M. and Patsek,
T. W., 1996. “Prediction of Formation Damage During
Fluid Injection Into Fractured, Low Permeability Re-
servoirs via Neural Networks™, paper SPE 31103 presen-
ted at the SPE Formation Damage Symposium, Lafayette,
LA. (February 16 - 18)

Nikravesh, M., Kovscek, A. R., Patzek, T.W. and Soroush,
M., 1996. “Identification and Control of Industrial Scale
Processes via Neural Networks”, presented at the Che-
mical Process Control V] Tahoe City, CA. (January 26).

Rogers, L.L. and Dowla, F. U., 1994. “Optimization of
Groundwater Remediation Using Artificial Neural Net-
works with Parallel Solute Transport Modeling”, Water
Res. Res., 30 (2): 457 -481.

Shao, H., Brimhall, R. M., Ahr, W. M. and Wu, C. H., 1994a.
“Integrated Recovery Efficiency Forecast Models for San
Andres Reservoirs of Central Basin Platform and Northern
Shelf, West Texas”, SPE 27697 (poster) presented at

CT&F - Ciencia, Tecnologia y Futuro - Vol. T Ntm.5  Dic. 1999

the Permian Basin Oil & Gas Conference, Midland
(March 16 - 18).

Shao, H., Brimhall, R. M., Ahr, W. M. and Wu, C. H., 1994b.
“An Application of Idealized Carbonate Depositional
Sequences for Reservoir Characterization”, SPE 28458
(poster) presented at the Annual Technical Conference
and Exhibition, New Orleans (Sept. 25-28).

Soto B., R., 1998. “Reservoir Characterization Using Core,
Well Log, and Seismic Data and Intelligent Software”,
Dissertation, Texas A&M University, College Station,
Texas.

Wu, C. H., Lu, G F,, Xue, G P. and Brimhall, R. M., 1993.
“Empirical Oil Recovery Forecast Models for Waterflood
Infill Drilling in West Texas Carbonate Reservoirs”,
presented at the Southwestern Petroleum Short Course,
Texas Tech. University, Lubbock, Texas (April 21 - 22).

Wu, C. H., Lu, G F,, Gillespie, W. and Yen, J., 1997. “ Statistical
and Fuzzy Infill Drilling Models for Carbonate Re-
servoirs”, paper SPE 37728 presented at the SPE Middle
East Oil Show & Conference, Bahrain (March 15 - 18)

Wu, C.H., 1992. “Infill Drilling Use Improves Waterflood Oil
Recovery”, The American Oil & Gas Reporter (61 March).

Wu, C. H., Laughlin, B. A. and Jardon, M., 1988. “Impact of
Infill Drilling on Waterflood Recovery: West Texas
Carbonate Reservoirs”, SPE 17286 presented at the SPE
Permian Basin Oil and Gas Recovery Conference,
Midland (March 10-11).

Xue, G and Datta-Gupta, A., 1996. “A New Approach to
Seismic Data Integration During Reservoir Character-
ization Using Optimal Non-Parametric Transformations”,
paper SPE 36500 presented at the SPE Annual Techni-
cal Conference, Denver (October 6 - 9).

Xue, G, Datta-Gupta, A., Valko, P. and Blasingame, T., 1996.
“Optimal Transformations for Multiple Regression: Appli-
cation to Permeability Estimation From Well Logs”, paper
SPE 36500 presented at SPE Improved Qil Recovery
Symposium, Tulsa (April 21).

23



