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Finite Element Model (FEM) is presented to simulate flow of a single phase fluid through
porous media in 2-dimensions. This model is the initial phase of a ressarch project that builds
4. . on the development of a general reservoir simulator for three phase flow. The numerical model
can be applied 1o heterogeneous fields with constant thickness but complex irregular geomairy. No
restrictions are imposed in the number of wells in the field. Governing equations and the boundary
conditions are specified, followed by a descripfion of the FEM formulation. Analytical solufions are used
to verify the predictions of the model in a circular reservoir. It is also applied in the preliminary simulation
of a sector in the Orito cil field (Ecopetrol) located in the Putumayo Department (Southern Colombiay).

Se presenta un modelo en elementos finitos para simular el flujo de un fluide monofésico en un medic
poroso bidimensional. Este modelo constituye la fase inicial de un proyecte destinado al desarrollo de
un simulador general de yacimientos para flujo multifésico. El modelo numérico desarrcllado considera
que el dominio tiene un espesor constante, puede ser aplicado a campos heferogéneos con geomeirias
irregulares y complejas, y no hay restriccién en el nGmero de pozos que pueda fener el campo. Las
siguientes suposiciones fueron hechas para hacer el problema manejable: un fluido ligeramente
compresible, isctérmico, ausencia de efectos gravitacionales y un medio poroso isotrépico. Las
predicciones del modelo desarrollado son verificadas con soluciones andliticas en el caso de un yacimiento
circular y aplicado a la simulacién muy preliminar de un sector del campo Orito (Ecopetrol) localizado
en el departamento del Putumayo (al Sur de Colombia).

Palabras Claves: métodos numéricos, simulacién, elementos finitos.

* A quien debe ser enviada la correspondencia.
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:Volumetric Factor

:Total Compressibility

:Depth

:Permeability

:Number of elements

:Normal unit vector )
:Component in the x direction of the normal unit vector
:Component in the y direction of the normal unit vector
:Pressure

Initial Pressure

:Source or Sink
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Q" :Flow of mass that enters or leaves through the boundaries
:Radius of the reservoir

‘Time

:Cartesian Coordinates

<

:Fluid viscosity

:Fluid density

:Porosity

:Boundary of the reservoir
:Boundary of the element

T

:Interpolation function
:Domain of the reservoir

:Domain of the element

T

Reservoir Simulation is a technological tool that has
achieved a high degree of development during the last
two decades, becoming now a mature technology.
There exist a number of reservoir simulators available
in the market, most of them developed using the nu-
merical technique called Finites Differences or their

“ modifications.

Recently some researchers (Nansen, 1993; Khalid,
1993; Abdou, Pham and Al - Ageel, 1993) have anali-
zed new possibilities and trends in the developments of
numerical simulators and optimization using the Finite
Element Method. In the last ien years, several articles
have been published related to the application of the
Finite Element Method in reservoir simulation (Forsyth,
1990; Fung, Hiebert and Nghiem, 1992)

Reservoir simulation requires as a first step, the
knowledge of basic parameters or input data which must
be previously fixed by using techniques or tools different
from the Reservoir Simulation, The most common input
data are: permeability (k), porosity (), fluid viscosities
(1), total compressibility (c;), thickness (%), initial
pressure (p;), injection rates (g;), initial production rates
(qp) and boundaries of the reservoir domain (T).

The results or output data after a simulation run in-
clude: prediction of production rates versus time (as a
production curves - after matching process or as a vec-
torial distribution of velocity on the problem domain)
- and predictions of pressure variations all over the

reservoir (isobaric maps).
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The development of a mathematical model that
describes the displacement of fluids in a porous media
involves differential equations that are usually too
complex to be solved by analytical methods, Therefore,
numerical methods are an alternative that allows the
obtention of approximate solutions to the problem.
Finite Difference, Finite Element and Boundary Ele-
ment method are among the most used numerical
methods.

The Finite Element Method (FEM), which is used
in this project, has certain advantages in comparison to
other methods such as the Finite Difference Method.
These advantages are due to a better representation of
complex domains and the case of imposing boundary
conditions on boundaries of arbitrary shape (Lancaster
and Salkauskas 1990; Zienkiewicz 1977).

The goal of the present work was to develop a
computer tool to be used in numerical simulation of
petroleum reservoirs with complex geological charac-
teristics, such as irregular edges (non regular geome-
trical borders) and the presence of multiple geological
faults through the reservoir. These characteristics are
present in most Colombian fields.

Initially, the mathematical equations were presented
based on the rules of flow in porous media. Afterwards,
the numerical formulation was developed, in which the
differential equation obtained is approximated spatially
by the Galerkin method and temporary by a finite
difference scheme. Then, the model was first verified
for a radial flux system, comparing the results with the
analytical solution. Finally, the model was applied to
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Producer
=4
Injector
+q 1§

Figure 1. Physical model of the one phase problem in two
dimensions and boundary conditions.

the simulation of the flow of oil in a irregular domain,
where. the velocity vectors and the pressure contours
are obtained in different time steps.

A porous media (€2) with constant thickness ()
saturated with fluid, slightly compressible, which is
flowing in a horizontal plane (X, Y plane) through a
homogenous media was considered. The domain can
contain one or more production wells (-¢) o injection
wells (4+¢) as it is shown in Figure 1.

The equation that governs flow of fluids in porous
media (Aziz and Setari, 1979) are obtained using
Darcy’s law (mass conservation and the state equa-

tions):
8 (_&_G_P]J, 3 ("_ya_P]=

ax \guc, ax) " ay \guc, oy o
2,1, mo
at  poc,

Equation (I) is known as the equation of diffusion,
and it’s subject to the following initial and boundary
conditions.

Initial Conditions

It represents the initial state of the reservoir (pressure
of the porous media at r=0).

p(x,y:0) = p; Xy €Q : 2
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Boundary Conditions

Two types of boundary conditions are considered
in the present study.

Boundaries with specified flow

When the flow rate is specified Q(T') at a given part
of the boundary (I'1 in Figure 1), the normal component
of the vector velocity by unit area in the boundary should
be equal to the rate of flow, In other words, the
directional derivative of the pressure is specified in a
normal direction to the boundary of the domain dp/an.

The rate of flow Q(T") is calculated by the escalar
product between the velocity (Darcy’s Law) and the
normal vector to the boundary 7i:
k (@'p) =00 on &)

iH

In the special case, when there is no flow through a
given part of the boundary (I'; in Figure 1), the normal
component of the vector velocity in the boundary has
to be zero.

Vp-ii=0 on T, “

Boundaries with specified pressure

The distribution or value of pressure is specified at
the boundary by:

px,y;t)=p

on T (3)

The method of finite elements has been used for the
solution of continuum problems since the fifties. It's
explained in detail in the references (Reddy, 1984;
Strang and Fix, 1973; Zienkiewicz, 1977; Desai, 1979;
Lancaster and Salkauskas, 1990).

Initially, the ruling equation (/) is written in an
abridged form:

a( ap)y o ~
——[a_‘. ~£)——;~ a},a—p ai)+q =0 (6)
ox ax/ ay day /) ot
k k ~
where: a, = — ; a,=—— y §= 9.
puc, T dug pPpe,

After that, the porous media is discretized in N sub-
regions or triangular elements (Figure 2), which make
it easier to simulate irregular geometries.

Spatial Discretization

Applying the method of weighted residuals (Reddy,
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ELEMENT

Figure 2. Discretization of domain by finite elements and
identification of basic components.

1984) the result of equation (6) multiplied by a function
of weight v and then integrated over a domain composed
of element €, gives:

d g a
fof-2le)-2a 2
Q, ax ax/ oy ay

Applying the theorem of Green-Gauss to the first
term in equation (7),

Jo fle e
DN S 2

+%—+zj’]d§2=.0 ?)

-

and repeating the same process for the second term
and replacing gives,

f [ﬁ (ar 2‘2)+a—v[a}. E‘I—J)]dg
Qox\ " dx/) ay ay
& d %P

gﬁn vlinx (ax ax) +1, [a), P de

ap P
+f9e v(a)dﬂ + fiée vidQ =0 €))

The boundary terms in the equation (9) corresponds
to the flux of mass through the boundaries which is the
scalar product of the normal vector and the flow,
represented by:

9

ap ap
Qn =R, (ax '&)‘1‘.’1), (ay 5] (10)

Pressure is aproximated by intérpolation of defined
functions for three nodal elements, by the equation:

3
Pe(x.3.1) = E P (x,y)p;(t) (n
j=1

- where the p; are the values of the pressure in the vertices

of the element (x;, y;) and ; are the interpolating
functions.

Replacing (10) and (Z1) in (9),

ooz Sy
Q.| ax * ax = jpj

3
av d
+5;[a}. a_},zwﬂ’j
/=1
3 3
_@I} vQH dr -+ ng v EE 21 Tf)jpj
J=

and applying the method of Galerkin (v =1 I-) the
following equation is obtained:

2 ey, oy,
f aIPE ax th +a:'!p1 a 1’!}} dg p
2 Q.| ax ox ay L7 ay /

ds?

(12)

dQ+fQ VGaQ = 0

j=1
3 ap;
v | P
—ﬁ~ew1Q"fdr+zifQPw"wj( af d9+
1=
fgewié"dg =0 (i=1,--N) (13)

or [K(e)]{ ph+ [M @ ]{ pt= {F (e)} for each element e

where;

, ayr s dip
K,© =\f W a, Xy + av—wijp’r aQ
Q.| dx ax ay \ 7y

_ij(e) = ngw}w;dQ

RO = [ vida@—f, vio,ar

Matriz [K®] includes the coefficients obtained in
the spatial discretization; matriz [M(e)] contains the
coefficients obtained in the spatial discretization that
accompany the temporal discretization, and the vector
{F (e)} contains the terms related to the sources (pro-
ducing wells) and/or sinks (injecting wells) plus the
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flow of mass that enters or leaves the element by the
boundaries.

Temporal Discretization

According to Reddy (1984), the derivate of pressure
versus time, in equation (13), is aproximated using a
scheme in finite differences (Ritchmyer and Marton, 1967;
Smith, 1987). In other words, a recurrence relation-
ship is used which linearly weights the values of pressu-
re in two time steps (t fosl ):

{p}uﬂ _{P}u

Aty (19

o\p , +A-01p}, =
for 0=6=<1

Galerkin’s scheme was used for this particular
problem with 6 =2 /3 which gives unconditional sta-
bility.

Combining the different subsystems (/3) that appear
for each element e, and taking in consideration the
connectivity between adjacent elements, a linear system
for the whole domain is obtained.

(K p} +[ M) p} ={ F} (15)

where [K] is the connectivity matriz.

Applying the time marching process this linear sys-
tem is solved at each time step, and the time - history
of the pressure at each node is obtained.

Circular homogenous reservoir with a
production well at the center

The model was first applied to simulate the transient
behavior of the pressure in a circular reservoir with a
producing well, for which an analytical solution exists.

The geometry of the domain is shown in Figure 3
only a fourth of the domain is discretized, due to the
symmetry of the problem. For the simulation, a total
of 52 elements and 36 nodes were used. Initially, the
reservoir had a constant pressure of 20,67 MPa (3.000
psi) a well is open at t=0 and the variation of pressure
as a function of time is calculated. The fluid and porous
media properties are: k=0,1 md, ¢=0,23, ©=0,72 cp,
¢=1,5Pa (1,5x10-5 psi), h=45,7 m (150 ft), R=30,5
m (100 ft), B=1,475 RB/STB, g=3,15 m3d-! (20 BPD),
pi=20,68 MPa.

Figure 4 shows the behavior of pressure as a function
of time for three observations points. It’s seen that the
pressure dropout is more severe for the observation
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Radius: R=1001t

on "0

Figure 3. Grid used to simulate radial flow in a circular
reservoir with o single well af the center.

point near to the well, r = 5 ft. Therefore, the steady
state is not reached in the reservoir after 100 hours of
flow.

In general, the results show that the numerical
solution behaves in a similar way as an analytical solu-
tion. The difference between the two of them increases
for the points closer to the well; this is due to the fact
that the analytical solution assumes that the radius of
the well is very small, while the numerical solution
supposes a finite radius.

3.100

— 1 Analytical solution -
0 0t Numerlcal solution::

o
©
S
|O

r=151t

Pressure (psi)

2,600

2.500—

2'400'|'i"f|'="|'|'|'|'i
o0 10 20 30 40 50 80 VO 80 90 100

Time {h)

Figure 4. Comparison of the results obtained by the Finite
Element Method against the analylical solution for the radicl
flow system.
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Figure 5. Physical model for reservoir with irregular
geometry. Orito’s sector containing four roducers wells.

Reservoir of Trregular Geometry

The model was applied to model the flow of oil in
the Caballos formation Orito field (Putumayo, Colom-
bia). Figure 5 illustrates the geometry and the boundary
conditions of the field. In the system, there are four

Figure 6. Grid with numbering at the nodes for the irregular
geometry system.

producing wells, a impermeable boundary represented
by a fault, and the rest of the boundary is mantained at
a constant pressure of 22,7 Mpa (3.293 psi). The
fluid and rock properties are: ¢=0,1, k=60 md, ¢;=1,5
Pa(1,5x10-3 psi), n=36,6 m (120 ft),.u=13 cp, B=1,0
RB/STB, ¢;=238,4 m3d-! (1.500 BPD), g,=286,1

¥ Producer wells

Time: 6 months

¥ Producer wells

o

Time: 7 months
Scale of velocity:

Scale of velocity
0,1 fyday E it/day
Figure 7. Velocity distribution vectors for Orito’s field Sector.
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Tirne: 8 months

(@)

Time: 7 years

(b)

Figure 8. lsobaric maps for Crito’s field Sector.

m3d-! (1.800 BPD), ¢5=206,7 m3d-1 (1.300 BPD),
¢+=159,0 m3d-! (1.000 BPD), p;=22,7 Mpa (3.293
psi).

The area of interest was divided in 70 triangular
elements with 50 nodes as shown in Figure 6. The
velocities and pressures of the oil are calculated in the
centroid of each element for different time steps. The
variation of the oil pressure was calculated for 10 years
in different points of observation, as well.

3.500
S N Node # 10
3.000— K
] Node # 3
2.750 —
@ 2500
St —
g 2.250— )
a — Node # 23
2 2000
l U
1.750—
- Node # 12
1.500 —
1.250 — Node # 13
1.000 |';|||||||||||||=‘_|'||||||
0 10 20 30 40 50 B0 70 80 90 100 110 120

Time {(months)

Figure 9. Behavior of pressure against time for differents
' control points at Orlte’s field Sector.
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Figure 7, shows that the velocity has a radial pattern
towards the producing wells. In zones far from the
wells, the velocity is minimum, converging to zero near
the impermeable boundary. The maximum velocity afier
7 years is around 9 mmd-! (0,03 ft/day).

The isobaric maps presented in Figure 8 indicate
that the pressure decreases gradually from 22,7 Mpa
(3.293 psi) in the lower boundary to aproximately 1.000
psi in the upper impermeable boundary. In the wells,
the pressure lines have a circular tendency, increasing
and deforming until it adquires the shape of the boun-
dary.

Figure 9 shows the values of pressure against time
for different points of observation in the domain. It is
observed that the behavior of the pressure is stable after
a period of 60 months.

@ A first aproximation of a numerical reservoir simu-
lator for one single fluid flow in two dimensions,
using Finite Elements, has been developed. In the
future, the simulator will be improved to consider
more complex situations found in multiphase and
three dimensional flow.

@ The numerical solution for the pressure of an
idealized circular reservoir including one well at
the center, was acceptable when compared to the
analytical solution.
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' Pressure values obtained for several control points
inside of one sector of Orito’s field showed good

agreement with the known values at specific times.

@ This single fluid flow model showed that the Finite
Element Method is an alternative to solve flow
problems in porous media in complex systems.

.The authors want to express their gratitude to the Engi-
neers Roberto Jiménez, Kurt Bayer, Aristobulo Bejarano
and Luis Felipe Carrillo for their support to the present pro-
ject. S
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