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ABSTRACT 
Hybrid Electric Vehicles (HEVs) must ensure power demand 
through minimum fuel consumption and a control strategy. 
Existing control methods were easy to implement, showing 
quick response and good performance. Power demand is linked 
to numerous factors such as level of social and economic 
expansion, industrialization, urbanization, and technological 
growth. However, power demand problems like higher energy 
waste, poor quality, less accuracy, lack of robustness, and limited 
operating range were not reduced in existing controller  methods. 
This paper presents an Artificial Fish Swarm Speed Optimization 
Fuzzy PID Controller (AFSSOF-PIDC). AFSSOFPIDC-DRNLC 
includes different layers in drive train management. Initially, 
different vehicle data is considered in the input layer and then sent 
to hidden layer 1. Fitness is identified by improved Artificial Fish 
Swarm Speed Optimization to find optimal values that minimize 
the power demand, and then send it toward hidden layer 2. A 
Mamdani Fuzzy PID Controller is used in hidden layer 2. If the 
fitness value of the vehicle information is less than the threshold 
value, fuel consumption is minimized in the HEV. Otherwise, 
consumption of fuel is not minimized in the HEV. Finally, energy 
management is achieved through minimal power demand. 
The results indicate that the performance of the proposed 
AFSSOFPIDC-DRNLC technique minimizes fuel consumption by 
increasing the performance of the controller as compared with 
existing methods.
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RESUMEN
Los vehículos eléctricos híbridos (VEHs) tienen que garantizar la 
demanda de potencia utilizando un consumo mínimo de combustible 
y una estrategia de control. Existen métodos de control , fáciles 
de aplicar,  de respuesta rápida y buen rendimiento. La demanda 
de energía se debe a numerosos factores, como el nivel de 
expansión social y económico, la industrialización, la urbanización 
y el crecimiento tecnológico. Sin embargo, los problemas como 
el mayor gasto de energía, baja calidad, menor precision, falta 
de robustez y rango de operación limitado, no se han reducido en 
los métodos de controlador existentes.  Este trabajo presenta un 
controlador PID difuso (AFSSOF-PIDC) para la optimización de 
la velocidad de enjambres de peces artificiales. AFSSOF-PIDC-
DRNLC incluye varias capas de gestión del tren de potencia. En 
primer lugar, se consideran varios datos del vehículo como entrada 
en la capa de entrada y se envían a la capa oculta 1. La aptitud se 
determina mediante una optimización mejorada de la velocidad del 
enjambre de peces artificiales para encontrar valores óptimos que 
minimicen la demanda de potencia y se envía a la capa oculta 2. 
En la capa oculta 2 se utiliza un controlador PID difuso Mamdani. 
Si el valor de aptitud de la información del vehículo es inferior al 
valor umbral, se minimiza el consumo de combustible en el HEV. 
En caso contrario, el consumo de combustible no se minimiza en el 
HEV. Por último, la gestión de la energía se consigue minimizando 
la demanda de potencia. Los resultados indican que el rendimiento 
de la técnica AFSSOFPIDC-DRNLC propuesta minimiza el consumo 
de combustible para aumentar el rendimiento del controlador en 
comparación con los métodos existentes.
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HEVs are widely considered for enhancing fuel economy and 
minimizing emissions. The advantages of HEVs are enhancement 
of fuel and less emissions. Various types of energy sources such 
as gasoline internal combustion engines, batteries, diesel engines, 
etc.. are used by an HEV. Energy management policy manages the 
efficiency of fuel to HEV. The proposed PID control technique is most 
frequently used based on combining all management categories. 
EMS was introduced in Climent et al. (2021) with Parallel Hybrid 
Electric Vehicle (PHEV) for reducing consumption of fuel to meet the 
limitations on State of Charge (SOC). However, it failed in decreasing 
computational costs. An economic non-linear hybrid model was 
introduced in Kim et al. (2020) with a control plan to find energy 
within an HEV. It was restricted to different driveline modes as well 
as linked to other control issues. However, it failed to reduce fuel 
consumption.

The finest power split within PSR was converted in Al-Sagheer and 
Steinberger-Wilckens (2020) by means of the control approach. 
The ratio approved towards Low-Level Controller (LLC) was 
developed by the set-point. It was accountable for power control 
of fuel consumption and battery control elements. However, the 
state of charging was not reduced by the control approach. A hybrid 
data-driven approach was designed in Parsa et al. (2021) based 
on machine learning. It was introduced to determine the standard 
deviation of tentative parameters. Nonetheless, the power demand 
was not addressed by a hybrid data-driven approach.

The model-based cabin heating and powertrain optimization was 
introduced in Hemmati et al. (2021) through the plug-in HEV. The 
vehicle trip period was determined to predict the cabin heating as 
well as the power train demands. Although power demand was 
reduced, the time consumption was not minimized. Comprehensive 
learning with Plug-in Hybrid Electric Vehicles (PHEV) optimum 
powertrain design was carried out in DaSilva et al. (2021) for 
performing the multi-criteria estimation. The drive train has 
worked with the finest pattern as well as differential gear ratios. 
However, energy management issues were not addressed by the 
comprehensive learning.

Accelerated reinforcement learning, added to online-updated 
plans were introduced by Zou et al. (2021) for addressing energy 
management issues. The prioritized replay was employed for rapid 
convergence. The prioritized replay module was used to train the 
data history in the neural network. Although energy management 
issues were addressed, the computational complexity was not 
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minimized. A cooperative optimization plan was designed in Liu, Y., 
Huang, Z., et al. (2021) for velocity development as well as energy 
management within th HEV. Depending on the vehicle scheme, the 
statistical scheme was used for translating driving cycles. However, 
convergence was not carried out at minimal time consumption.

A new approach was introduced in Fernandes et al. (2021) depending 
on the driver volatility determined through vehicle acceleration 
for computing the HEV. The dynamic emission model symbolized 
the driving behaviors. However, the state of charging is not 
minimized. The degradation-adaptive EMS was introduced by Song 
et al. (2021)  to vary the power allocation among various power 
sources. A degradation model was introduced to the fuel cell. The 
degradation scheme joined the polarization curve of fuel cells in 
various surroundings as well as other effective schemes. However, 
the fuel consumption was not reduced by a degradation-adaptive 
energy management strategy.
The above mentioned problems recognized over literature are 
smaller SOC, greater time consumption, higher fuel consumption, 
higher power demand, higher computational complexity, higher 
cost, etc.  To handle the limitations, the Artificial Fish Swarm Speed 
Optimized Fuzzy PID Controller-based Deep Recurrent Neural 
Leaning Classifier (AFSSOFPIDC-DRNLC) Model is introduced.

The contribution of AFSSOFPIDC-DRNLC is explained below.

• AFSSOFPIDC-DRNLC was introduced for performing energy 
management and efficiency enhancement in HEVs. 

• The input of different vehicle speeds, engine speeds, motor 
speeds as well and state of charging is considered and sent to 
the input layer. The input layer broadcasts data toward hidden 
layer 1. The optimal value is discovered by Improved Artificial 
Fish Swarm Speed Optimization to minimize the power demand. 

• Hidden layer 2 applies the Mamdani Fuzzy PID Controller with 
if-then rule ideas in hybrid electric vehicles. When the fitness 
value of vehicle information is less, fuel consumption is reduced 
in hybrid electric vehicles. When the fitness value of vehicle 
information is higher, the fuel consumption is not reduced in 
hybrid electric vehicles due to less power demand.

The rest of the paper is organized as follows: The literature survey 
is presented in Section 2. AFSSOFPIDC-DRNLC with a detailed 
algorithm is portrayed in Section 3. Results and discussion are 
included in Section 4. The conclusion is explained in Section 5.

Coupling characteristics were determined in Zeng et al. (2021), 
where energy losses were examined. The new theoretical fuel 
scheme and the Fuel Saving Contribution Rate (FSCR) were 
introduced for the decoupling analysis of fuel impact features. 
Deep Reinforcement Learning (DRL) called Twin-Delayed Deep 
Deterministic Policy Gradient Algorithm (TD3) introduced in Zhou, J. 
et al. (2021) for bright EMS in the HEV. Heuristic rule-based LC was 
connected with DRL for removing the irrational torque allocation by 
power train component individuality. However, the fuel consumption 
issues were not considered by the DRL algorithm.

In Du et al. (2020), battery aging and a temperature-aware predictive 
energy management policy was introduced. The designed method 

was applied depending on the model predictive control (MPC) 
for urban bus transportation. The stochastic speed predictor 
was measured because of speed transition under actual driving 
conditions. However, the designed method of time consumption 
was not reduced.

A comparative study was carried out in Ali and Boukettaya (2020) 
among offline optimization methods to guarantee the finest power 
split between electric motors and the Internal Combustion Engine 
(ICE) within the hybrid propulsion method. EMS was split in two 
parts. The first one was to perform a supervision study. However, 
optimization was not performed to manage the vehicle’s velocity.



C T& F Vol .  1 3 Num . 2 D e c emb er 2 0 2 3 31

Ec op e t r o l

An energy management system evolution was conducted in 
Martínez et al. (2017) with blended mode and optimal control in 
the optimization-based algorithm. It was carried out in a connected 
vehicles context, with emphasis on contribution in Intelligent 
Transportation Systems (ITS), traffic information, and cloud 
computing for improving PHEV. Although optimization control was 
performed, the fuel consumption was not minimized.

A fuzzy controller approach was introduced in Neffati and Marzouki 
(2020), with various phases within the mission profile. The designed 
approach determined offline rules and online decisions. For 
minimizing fuel, segmentation derived control situations among 
several rules. However, the SOC was not reduced by controlling the 
speed using the fuzzy controller approach. Dynamic programming 
was used in Peng et al. (2020). to allocate energy from the engine 
and battery to reduce fuel consumption. The control rule of 
energy recovery was inserted within the dynamic programming. 
The time was reduced by enhancing dynamic programming and 
optimization algorithms. Even though the computing time and the 
fuel consumption were reduced, the efficiency of hybrid electric 
vehicles did not improve.

Energy management performance and its efficiency were considered 
in Javadi and Marzban (2016). for vehicles based on accuracy and 
efficiency. The optimization design is performed on an energy 
management system. EMS was designed by Wu et al. (2020) based 
on neural networks to multi-mode plug-in HEV. The offline optimal 
results were attained with knowledge learning through dynamic 
programming, as well as the Pontryagin rule. Although energy 
management was carried out, the computational complexity was 
not minimized.

Vehicle speed predictions with Markov, as well as the BackPropagation 
(BP) neural network were implemented in Zhang, L. P. et al. (2020) 
to forecast velocity and Adaptive Equivalent Consumption Minimum 
Strategy (AECMS). A vehicle speed forecast was carried out for 
managing drive mode as well as power distribution. However, the 
fuel consumption was not reduced by the vehicle speed prediction 
model. Fuel efficiency was considered in Panday and Bansal (2016). 
by a genetic method. However, the fuel consumption was minimized 
by the designed method.

Optimal solutions were offered in Millo et al. (2023) by the Deep 
Learning (DL) algorithm. However, the vehicle speed was not 
maintained. The optimal equivalence factor was determined in 
Pulvirenti et al., (2023) with Long Short-Term Memory (LSTM) 
as well as Deep Neural Network (DNN). The multi-criteria power 
allocation strategy was introduced in Zhou, Y. et al. (2020) with less 
battery energy allocation. A new hybrid method was developed in 
Mousa (2023) with minimum vehicle’s total fuel consumption. The 
DRL method and transfer learning were introduced in Chen, H. et al. 
(2023) with less time.  The performance of the HEV was enhanced 
in Hu and Zhang (2022) advanced driver experience model. The 
Multi-agent Deep Reinforcement Learning was discussed in Hua 
et al. (2023) to review  learning performance. However, the energy 
consumption was not decreased. 

The Machine Learning (ML) approach was investigated in Chen, T. et 
al. (2022) for higher efficiency. Fuel consumption was diminished in 
Kamoona et al. (2022) with a Fuzzy logic controller and an Artificial 
Neural Network (ANN). The Data-driven model-basis of the offline 
RL technique was analysed in Hu et al. (2023) for achieving near-
optimal policy. An intelligent control concept with deep Q-learning 
was introduced in Lee et al. (2021) to determine the best control 

parameter. The Imitation Reinforcement Learning was developed 
in Liu, Y., Wu, Y., et al. (2023) with the aid of a reward function. New 
approaches for energy management strategies were discussed in 
Donatantonio et al. (2022)] aimed at obtaining superior average 
efficiency.

The Model Predictive Control (MPC) basis of EMS, coupled with 
double Q-learning (DQL), was introduced in Chen, Z., Gu, H., et al. 
(2022) with higher fuel efficiency. Nonetheless, it failed to minimize 
fuel consumption. A review of qualitative and quantitative methods 
was discussed in Gautam et al., (2022) for maximum vehicle 
performance. Enhanced as well as adaptive DL-basis of velocity 
prediction was utilized in Udeogu and Lim (2022). to boost battery 
lifetime. A novel adaptive learning network was presented in Zhou, 
D et al., (2021) with higher control performance. The NN basis of 
ECMS was developed in Chen, Z., Liu, Y., et al. (2022)] for identifying 
optimal engine status. An uncertainty-aware energy management 
plan was developed in Zhang, T. et al., (2022) for measuring speed 
forecast. However, it failed to minimize energy consumption. 

The Energy Management Strategy (EMS) in HEVs is vital to help 
fuel consumption efficiency. The control plan for the finest energy 
in the HEV is designed in an economic non-linear hybrid model. It 
was controlled in several driveline modes and linked to the finest 
control issues. The control scheme was designed to exchange the 
finest power split within PSR. It was responsible for power control of 
fuel consumption and battery control elements. Moreover, the state 
of charging was not minimized. The issue of energy organization 
includes optimal distribution of power among energy sources of 
the scheme. The ML method was performed to attain energy-
controlling performance. However, the power demand of electric 
motors, concerning operating constraints such as fuel consumption 
and the defined SOC of the battery were not addressed by a hybrid 
data-driven approach. The vehicle trip period determined for power 
demand was reduced, and the time consumption was not minimized. 
To solve this issue, the AFSSOFPIDC-DRNLC Model for energy 
management and efficiency performance enhancement was used.

The petrol and diesel ICE realizable automotive powering though 
their competence was less. The torque created was a key problem 
as well as the control of the HEV. Due to emission problems and 
fuel charge enhancement, the interest goes to battery-operated 
vehicles. However, the key issue of battery vehicles was moving 
range limitations because of battery capacity. To address the above 
mentioned issues, an Artificial Fish Swarm Speed Optimized Fuzzy 
PID Controller based Deep Recurrent Neural Leaning Classifier 
(AFSSOFPIDC-DRNLC) was developed. The major function of 
the designed scheme was an energy management system and 
efficiency performance enhancement. The architecture diagram of 
AFSSOFPIDC-DRNLC is shown in Figure 1.

Figure 1 explains AFSSOFPIDC-DRNLC. AFSSOFPIDC-DRNLC, 
which comprises several layers. AFSSOFPIDC-DRNLC has the 
number of vehicle data measured. Next, information is sent to 
hidden layer 1. Optimal vehicle data discovered by artificial fish 
swarm optimization is also sent to hidden layer 2.  To reduce energy 

3. THEORICAL FRAMEWORK

4. STATE OF THE TECHNIQUE
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Figure 1. Archietecture Diagram of AFSSOFPIDC-DRNLC Model

Figure 2. Structure of Deep Recurrent Neural Learning 
Classifier

Vehicle
Information

Deep Recurrent Neural Leaning Classifier

Vehicle information given to input
layer

Identify optimal vehicle information using
optimization techniques in hidden layer 1

Handle vehicle information speed using
fuzzy controller in hidden layer 2

Fuel consumption results given to the output
layer

Performs energy management and efficiency
enhancement in hybrid electri vehicle

consumption, a fuzzy controller was used to control motor velocity. 
Then, hidden layer 2 was sent to hidden layer 1 until reaching the 
minimal error value. Lastly, the results obtained at HEV translate 
into superior energy management.

ARTIFICIAL FISH SWARM SPEED OPTIMIZED FUZZY PID 
CONTROLLER-BASED DEEP RECURRENT NEURAL
LEARNING CLASSIFIER

The HEV was the most important research work in the automobile 
sector. The HEV was the combination  of ICE and the electric motor. 
The benefits of the HEV were lesser pollution, higher mileage, and 
minimal environmental effects. The main scope of the research 
was used for designing novel motors with better starting torque 
and high-quality competence.

5. EXPERIMENTAL 
DEVELOPMENT

Vehicle
Information

Input layer

Hidden layer

Output layer

The structure of the deep recurrent neural 
learning classifier is shown in Figure 2. 
Vehicle information as input to the input layer 
is specified. Input data is sent to hidden layer 
1. Optimal vehicle data recognized during 
artificial fish swarm speed optimization, 
sent to hidden layer 2. Mamdani fuzzy PID 
speed controller was sey to input and output 
results. Every neuron is linked to every 
neuron in the next layer and networks were 
susceptible to the overfitting data. Each 
neuron receives input over every element of 
the prior layer. At NN, every neuron obtains 
the output value with a particular function. 
Output over the hidden layer is fed within 
the input of the hidden layer for achieving 
enhanced outcomes. Finally,, outcomes were 
obtained in the output layer.

Then, the vehicle information ‘ VI= vei1, ve12, 
vei3,... vein’ as input was measured in the input 
layer. Through weight vector as well as bias, 
input values are computed.

Where the input layer is  ‘Input(t)’ to gather 
vehicle data by the time ‘t’, the first weight 
at the input layer is ‘with’. Next, it was 
transmitted within the hidden layer.

(1)

ARTIFICIAL FISH SWARM SPEED OPTIMIZATION

To achieve the finest solution, artificial fish swarm speed 
optimization was conducted in a hidden layer. Its behavior is that of 
live animals. Animal behavior is their movement in search of their 
food source. Artificial fish swarm is the metaheuristic algorithm 
depending on fish behavior like prey, swarm, and others. Artificial 
fish is related to the number of vehicle information and food 
sources in the resources (i.e., fuel consumption and efficiency). 
Based on the resources, optimal vehicle information (i.e. artificial 
fish) is chosen among the population. The optimization technique 
employs opposition-based learning to eliminate the local optimum 
by choosing the best individuals for the next generation. The purpose 
of the opposition-based learning idea is to consider opposite actions 
to attempt increasing the coverage of solution space. 

In the AFSSOFPIDC-DRNLC Model, the population of ‘n’ artificial fish 
swarms (i.e. vehicle information) is ‘VI = vei1 , vei2 , vei3 , ... vein’ randomly 
in search space. A superior solution was attained to generate the 
opposite artificial fish swarm population through the opposition 
basis of the learning approach. Consequently, the opposition-based 
artificial fish swarms population generation is given as,

From (2), ‘VI’  represents the opposite solution of the current 
population ' VI ’.‘si’ and ‘ti’ denotes the minimum and maximum 
value of dimension in the current population’. At the same time, the 
opposite of the current population is generated in the search space. 
After initialization, the fitness value is calculated for each current 

(2)
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Figure 3. PID Speed Controller Design

fish swarm and the opposite population of the swarm. Such fitness 
is determined depending on multiple objective functions. Optimal 
vehicle data was selected through the fitness measure with different 
processing capacities. The fitness function of vehicle information 
is determined as,

(3)

From (3), ‘FF(VI)’ denotes the fitness function of vehicle information. 
Then, the current population and opposite swarm populations are 
combined, and the artificial fishes are based on the fitness value. 
Finally, choose ‘n’ as the number of best artificial fish from the 
population for future processing. To determine the global best 
solution, three behaviors were reviewed depending on their fitness 
value.

SEARCH OR PREY BEHAVIOR 
Food has determined that prey has an essential artificial fish 
behavior. The fish finds the food in water through vision. The 
current fish position is denoted as 'Poi' and the novel fish position is 
represented as 'Poi(t+1)'. Search or prey behavior is performed when 
the fitness of a single fish is superior to others i.e. FF(VIi)<FF(VIj), 
Fish position updated as,

From (4), the updated fish position is  Poi(t+1), and the present 
position is Poi(t), portray the random number changes from 0 to 
1 (0<r<1)‘ δ’ denote the step of fish moving and , with the random 
positive number.‘||Poj-Poi||  indicates the visual distance among jth 
as well as fish position.

SWARM BEHAVIOR 
In the swarm behavior, for eliminating risk, fish are collected in the 
moving process. The current position of fish is considered as ‘Poi’.‘  
Thecenter position of different fish is shown.

From (5), ‘FF(VIc )’denotes the fitness value of the artificial fish at 
the center position.‘nb’ symbolizes the number of companions within 
the current neighborhood.‘ representing the total number of fish.‘β’ 
denotes the crowd factor values, ranging from 0 to 1. It is the center 
of fish and there is a large amount of food.

From (6), the updated fish position is measured, .‘r’ represents the 
random number that lies between zero and one, ‘indicating the step 
of the fish moving. The visual distance among the place of jth fish, 
as well as a middle place of fish in its neighborhood, has '||Poc-Poi||'. 

FOLLOWING BEHAVIOR 
Several fishes identify their food and neighborhood, and reach 
the food in a fast manner. ‘Poi’ symbolizes the current position 
of the fish, using the companion ‘Poj’ in the neighborhood. When 
‘(VIj)>F(VIi)&&(nb/n<β) ’, the following behavior is performed that 
represents companion ‘VIj’ state with a higher fitness value.  For 
artificial following fishes, the position-updating is given as,

(4)

(5)

(6)

From (7), ‘Pomax' symbolizes the position with the best fitness function 
value inside the visual. By using the greatest fitness, ‘||Pomax-Poi||’ 
denote the visual distance among ith as well as the mid position of 
fish. Via fitness, the old fish return to a novel optimal one. Finally, 
optimal vehicle information is identified. After finding the optimal 
vehicle information, the data was transferred to hidden layer 2.

MAMDANI FUZZY PID SPEED CONTROLLER
Mamdani Fuzzy PID Speed Controller used in hidden layer 2 to 
manage vehicle information speed within the HEV. PID is employed 
to develop functions for simplicity, simple design, lesser charge, and 
efficiency. Owing to non-linearity, conventional PID was not efficient. 
Three key parameters of PID such as Proportional (P), integral (I), and 
Derivative (D) were used. Three parameters are measured by time. 
‘P’ indicates the actual error.It depends on past errors gathered. ‘D’ 
denotes the future error prediction depending on the change in the 
current rate. Through varying changes in three parameters of PID, 
the present control action to procedure needs is set. Three terms 
were combined for computing the output of PID. It is explained as  
and shown by,

From (8), ‘Kp’ denotes the comparative gain, ‘Ki’ represents integral 
gain, ‘Kd’ symbolizes derivative gain, ‘e’ denotes the error present 
in the controller, ‘t’ denotes the instantaneous time, ‘x’ denotes the 
integration variable taken from time 0 to 1.

(7)

(8)

Vehicle
Information Error

Output

Figure 3 explains the controller tuning that denotes the different 
parameters (P,I,D) tuning to attain an optimized value of the desired 
response. Fuzzy logic is an extended version of logic methods for 
handling 'true' and 'false'. Fuzzy logic obtains numerous modes of 
human reasoning. Fuzzy logic comprises many values. The true 
value ranges between 0 and 1. The logic system addressed values of 
variables ranges between absolutely true and false. Variables were 
termed as linguistic variables. Every linguistic variable was explained 
through the membership function. A fuzzy system is employed to 
frame necessary rules. The fuzzy logic controller (FLC) is used in 
PID for achieving higher performance through fuzzification, fuzzy 
inference system, and defuzzification process. Fuzzyfication denotes 
the procedure of converting crisp values of controller inputs. A fuzzy 
inference system is easy for input as well as output relationships. 
Input data over the environment was processed for creating data 
events. Mamdani fuzzy is a type of fuzzy inference system. The 
trapezoidal fuzzy membership was used for analyzing the speed 
of the motor. The diagrammatic representation of the function is 
given in Figure 4.

Figure 4 demonstrates the trapezoidal membership task. The fuzzy 
concept employs the IF (condition) as well as THEN (termination) 
rules to associate inputs along with output. The rule is given by,

(9)
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Figure 5. Mamdani Fuzzy PID Controller

From (9), a fuzzy rule is generated. Defuzzification is the method of 
converting the fuzzy assigned to the control output variable within 
the crisp value.

Optimal vehicle
information

Mamdani Fuzzy
system

PID Controller

du
dt

Output

Figure 5 describes the Mamdani Fuzzy Partial Integral Differential 
Controller (PID) controller design. Mamdani Fuzzy PID Controller 
is employed with the if-then rule ideas in hybrid electric vehicles. 
When the fitness value of vehicle information is less than the 
threshold value, thefuel consumption decreases. When the fitness 
value of vehicle information was higher, fuel consumption was not 
minimized in hybrid electric vehicles. Therefore, vehicle speed must 
be controlled by the controller till energy consumption is minimized.

Result of AFSSOFPIDC-DRNLC implemented using MATLAB by 3.4 
GHz Intel Core i3 processor, 4GB RAM, as well as Windows 7 OS. An 
energy organization scheme was applied to optimize vehicle speed. 
Fuel consumption is minimized by Rule-based optimization control 
for preserving optimal speed. AFSSOFPIDC-DRNLC is to achieve 
better energy administration performance. It was experienced in 
shortl as well as extensive journeys. The energy management plan 
increased the fuel competence of the HEV. It has an essential role 
in splitting power between the engine as well as the battery. Power 
split improved fuel economy performance and controlled power 
flow. It depends on the SOC of the battery, the power needed for the 
wheels, and the engine operation. Table 2 explains the parameter 
selection of artificial fish swarm optimization.

Error/derivate error/
Integral error

Negative

Negative

Zero

Zero

Positive

Positive

N

N

Z

N

Z

P

Z

P

P

Table 1. Mamdani Fuzzy rules

Table 2. Selection of Parameters Using Artificial Fish 
Swarm Optimization for Fuzzy PID ControllerTable 1 describes Mamdani fuzzy rules created by fuzzy linguistics. 

Error ranges among –100 as well as +100. Error derivative values 
among -1 as well as +1. Integral error varies between -1 and +1. 
Then, results are sent to the output layer. Power challenges are 
minimized for proficient energy management.

Algorithm 1 explains the algorithmic process of AFSSOFPIDC-
DRNLC for motor speed control in hybrid electric vehicles. 
AFSSOFPIDC-DRNLC model considers the vehicle information to 
Deep Recurrent Neural Learning Classifier. Next, hidden layer 1 sends 
information towards hidden layer 2. For managing the speed of the 
motor, a fuzzy controller was employed. Finally, the last result was 
achieved in the output layer.

\\Artificial Fish Swarm Speed Optimized Fuzzy PID Controller
based Deep Recurrent Neural Leaning Classifier 
(AFSSOFPIDC-DRNLC) Model

Algorithm 1 Artificial Fish Swarm Speed Optimized Fuzzy PID
Controller based Deep 

Recurrent Neural Leaning Classifier (AFSSOFPIDC-DRNLC)Model

Input:

Output:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Vehicle information

Energy management and efficiency enhancement in hybrid vehicle

Step 1: Begin

For each vehicle information at input layer

The input layer transmits vehicle information to the hiddenlayer 1

Hidden layer 1 uses Artificial Fish Swarm Speed Optimization to
identify the optimal vehicle information
Hidden layer 2 uses Mamdani Fuzzy PID Speed Controller to
regulate the speed of the motor

The output layer displays result

End for

End

6. RESULTS

PMSM Parameters Parametric Values

Learning rate 0.9

Maximum Iteration 100

Membership function Trapezoidal function

FIS Mamdani

Particle Population 100

Number of trial runs 35

Convergence Acceptance 10-6

Number of input neurons 5

Number of initial hidden
neuron

8 (automatically varies during training
with Artificial Fish Swarm

Optimization process)
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Figure 6. Mamdani Fuzzy PID Controller
Figure 8. Simulation Result of Fuel Consumption

Figure 9. Simulation Results of SoC
Figure 7. Diagrammatic Representations of error, derivative 

error, and integral error

Simulation outcomes are illustrated to determine the fuel 
consumption of the proposed model. The vehicle starts with the 
sufficient condition of electricity on the correspondent feature. 

The selected drive mode considered was an electric drive. The 
electric drive comprises two motors, namely the main motor 
and the auxiliary motor. The main motor was used for dynamic 
purposes, and the auxiliary motor was used for braking purposes. 
Power distribution was similar as they were all electric drives. 
The controller is  impoprtanttfor obtaining power setting of fuel 
consumption, as well as the battery to be equipped, and safety 
constraints through tracking. To determine that the  drive system 
was inclined for engine drive, the fuel consumption of hybrid electric 
drive was lower than electric as well as engine drive. Also, the 
SOC difference in residual trip is demonstrated. The output of fuel 
consumption is shown in figure 8 below. 

7. RESULTS ANALYSIS

1
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Figure 6 has Mamdani Fuzzy PID Controller parametric values. 
Results of the Mamdani Fuzzy PID Controller are attained in Figure 
6. Error achieved has e=0.06, a derivative of error attained is 0.01, 
and the total error is 1*10-17. 

The error outcome is described in Figure 7. 

6

0.06

X (input):

Ref. input) Plot points: Help Close

Evaluate

Ready

E

15

de

15

101

X grids:

Y (input): Z (input): di
Y grids:

0.04
0.03 0.03 0.04 0.05 0.06

0.02 0.02
de E0.01 0.01

4

2

-2
0

x10-17

Fuel consumption is illustrated in Figure 8. If time is enhanced, the 
fuel consumption also improves as illustrated in the figure. The SOC 
variation and the corresponding fuel consumption are similar due 
to a similar use of motor power. While battery SOC has a maximum 
of 80%, the trends of SOC trajectories are similar. SOC decreases 
quickly towards 80%. If SOC ranges between 30% and 80%, the 
SOC trajectory diverges slightly. Simulation results of the SOC are 
illustrated in Figure 9.

Fuel consumption (g)
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100

99

98

97
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C

96

95
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The SOC results are shown in Figure 9. The SOC of the lithium-ion 
battery was used by a discrete power integrator. It was employed by 
an integral loop at the time. A variation within SOC was determined 
for battery charging or discharging energy. For the charging 
situation, the power provided guarantees vehicle challenges s to 
times and battery. At the beginning of the simulation, the battery 
is completely charged to 100%. SOC was improved significantly. 
Dynamic programming achieved. SOC fluctuates among definite 
higher and lower bounds. SOC stays charging-sustaining throughout 
the complete trip. SOC returned for the minimal stage than the first 
value. Figure 10 illustrates the speed waveform.

Vehicle speed changed quickly in Figure 10. The system has a good 
dynamic and attains a constant state rapidly, showing the possibility 
of a PID controller for the HEV.
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Figure 10. Simulation Results of Speed

CONCLUSIONS
A new model called AFSSOFPIDC-DRNLC Model is proposed, which 
regulates the motor speed for efficiency performance enhancement 
into the HEV by minimum fuel consumption. Furthermore, an 
AFSSOFPIDC-DRNLC Model for handling energy management of 
complex processes is introduced. Optimal values are determined 
with Improved Artificial Fish Swarm Speed Optimization to 

Methods
Parameter

Existing Energy
Management Strategy
(EMS)

52g 60% 0-60 Km/h

Existing economic
nonlinear hybrid
model

48g 64% 0-50 Km/h

Proposed
AFSSOFPIDC-
DRNLC Model

45g 70% 0-80 Km/h

Fuel Consumption (g) SOC (%) Speed (Km/h)

Table 3. Comparision of this work with existing work results

determine fitness to minimize the power demand. Fuel consumption 
is minimized by the Mamdani Fuzzy PID Controller using the if-then 
rule concepts for dealing with speed. 

When the fitness value of vehicle information is less than the 
threshold value, the consumption of fuel was minimized in the HEV. 
Otherwise, the consumption of fuel was not minimized in the HEV. 
The AFSSOFPIDC-DRNLC Model improves the performance of the 
HEV with lesser consumption of fuel when compared to existing 
works.
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