Improvement of lipid productivity on chlorella vulgaris using waste glycerol and sodium acetate

  • Laura-Lucía Estévez-Landazábal Universidad Industrial de Santander, Bucaramanga, Colombia
  • Andrés-Fernando Barajas-Solano Universidad Industrial de Santander, Bucaramanga, Colombia
  • Crisóstomo Barajas-Ferreira Universidad Industrial de Santander, Bucaramanga, Colombia
  • Viatcheslav Kafarov Universidad Industrial de Santander, Bucaramanga, Colombia
Keywords: Mixotrophic cultures, Microalgae, Biomass, Lipids, Biodiesel

Abstract

Although microalgae have great potential as a raw material for biodiesel production it is necessary to increase both biomass and lipids productivity. One way to achieve this goal is the implementation of mixotrophic cultures and the regulation of carbon/nitrogen ratio. The present work aims to improve the productivity of biomass and lipids in Chlorella vulgaris UTEX 1803 using waste glycerol from biodiesel production (1, 5 and 10% v/v) and sodium acetate (5, 10 and 20 mM) as carbon sources together with modification of the initial concentration of nitrogen (1.02; 1.47 and 2.94mM de NaNO3). All experiments were performed at 23±1ºC, with light: dark cycles of 12:12 h during 5 days.

In biomass production was achieved a significant increase (80% higher that autothrophic cultures without modification). The best percentages of lipids exceeded control culture up to 2.18. Lipid productivities were also found 2.83 and 3.5 times greater than control.

Results show the possibility of increasing the production of biomass and lipids by applying the carbon/nitrogen ratio using as a carbon source waste glycerol of the biodiesel industry that opens up great possibilities for the re-use of this residue thus increasing the sustainability of the process in general, Also has been proved that carbon/nitrogen ratio using sodium acetate is an interesting alternative

References

Alhanash, A., Kozhevnikova, E. F. & Kozhevnikov, I. V. (2008). Hydrogenolysis of glycerol to propanediol over Ru:polyoxometalate bifunctional catalyst. Catal. Lett., 120: 307-311.

Bouarab, L. Dautab, A. & Loudiki, M. (2004). Heterotrophic and mixotrophic growth of Micractinium pusillum fresenius in the presence of acetate and glucose : effect of light and acetate gradient concentration. Water Res., 38(11), 2706-2712.

Cerrate, S., Yan, F., Wang, Z., Coto, C., Sacakli, P. & Waldroup, P.W. (2006). Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. International J. of Poultry Science, 5(11), 1001-1007.

Chen, G. Q., Jiang, Y. & Chen, F. (2007). Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis. Food Chemistry, 104(4), 1580-1585.

Chi, Z., Pyle, D., Wen, Z., Frear, C. & Chen, S. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem., 42(11), 1537–1545.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol., 26(3), 126–131.

Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. (1999). Standard Methods for Examination of Water and Wastewater. 20th ed. Washington, DC: American Public Health Association. 4-1 a 4-6.

Degrenne, B., Pruvost, J., Christophe, G., Cornet, J., Cogne, G. & Legrand, J. (2010). Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int. J. Hydr. Energ., 35(19), 10741-10749.

Doucha, J. & Livansky, K. (2011) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol., 24, 35-43.

Droop, M.R. (1974). Heterotrophy of carbon. In: Stewart, W.D.P. (Ed.), Algal Physiology and Biochemistry. Oxford: Blackwell Scientific. 530-559.

Gavrilescu, M. & Chisti, Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnol. Adv., 23(7-8), 471–99.

González-Delgado, A. & Kafarov, V. (2011). Microalgae based biorefinery: Issues to consider. CT&F - Ciencia, Tecnología y Futuro. 4(4), 5-21.

Goulding, K. & Merrett, M. (1966). The photometabolism of acetate by Chlorella pyrenoidosa. J. Experimen. Bot., 17(4), 678-689.

Griffits, M. J. & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol., 21(5), 493-507.

Hagen,C., Grünewald, K., Xyländer, M. & Rothe, E. (2001). Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol. 13(1), 79–87.

Hammer, Ø., Harper, D. & Ryan, P. (2001). PAST. Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9.

Heredia-Arroyo, T., Wei, W. & Hu, B. (2010). Oil Accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol, 162(7), 1978–1995.

Heredia-Arroyo,T., Wei, W., Ruan, R. & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioen, 35(5), 2245-2253.

Holm, J. Lomborg, C., Oleskowicz, P. & Ebensen, K. (2008). On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes: evaluation of process analytical technologies. Biotechnol. Bioeng., 99(2), 302-313.

Hu, Q. (2004). Environmental Effects on Cell Composition. In: Richmond, A. (Ed.), Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Publishing. 83-88.

Hu, H. & Gao, K. (2003).Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol. Lett., 25(5), 421–425.

Huang, G., Chen, F., Wei, D., Zhang, X. & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Appl. Energy, 87(1), 38–46.

Huppe, H. & Turpin, D. (1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Annual. Rev. Plant. Physiol. Plant. Mol. Biol. 45, 577-607.

Jeon, Y., Cho, C. & Yun, Y. (2006). Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enz. Microb. Technol., 39: 490-495.

Johnson, D. & Taconi, K. (2007). The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26(4), 338-348.

Kalia, V. & Purohit, H. (2008). Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechol, 35(5), 403-419.

Khozin-Goldberg, I. & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem., 67(7), 696–701.

Lee, Y. (2001). Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol., 13(4), 307-315.

Lee, Y. (2004). Algal nutrition. Heterotrophic carbon nutrition. In: Richmond, A. (Ed.), Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Publishing. 116-124.

Lee, Y., Ding, S., Hoe, C. & Low, C.. (1996). Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. Appl. Phycol., 8(2), 163-169.

Lee, Y. & Zhang, D. (1999). Production of astaxanthin by Haematococcus. In: Cohen, Z. (Ed.), Chemicals from Microalgae. New York: CRC press, Taylor & Francis Group.173-190.

Li, X., Xu, H. & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng., 98(4), 764–771.

Liang, Y., Sarkany, N. & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett., 31(7), 1043–1049.

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., Zipursky, L & Darnell, J. (2005). Biología Celular y Molecular. Panamericana (5th ed). 150-157.

Loera-Quezada, M. M. & Olguín, E. J. (2010). Las microalgas oleaginosas como fuente de biodiesel: retos y oportunidades. Rev. latinoam. Biotecnol. Amb. Algal, 1(1), 91-116.

Lv, J., Cheng, L., Xu, X., Zhang, L. & Chen, H. (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol., 101(17), 6797-6804.

Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q. & Xian, M. (2008). Biodiesel production from oleaginous microorganisms. Renew. Energy, 34(1), 1-5.

Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de Sousa, C.O., Vich, D.V., de Carvalho, G.C. & Nascimento, M.A. (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research, 6(1),1-13.

Pérez-García, O., Escalante, F., de-Bashan, L. & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11-36.

Pinto, A., Guarieiro, L., Rezende, M., Ribeiro, N., Torres, E., Lopes, W., Pereira, P. & De Andrade, J. (2005). Biodiesel: An overview. J. Braz. Chem. Soc., 16 (6B), 1313-1330.

Plata, V., Kafarov, V. & Moreno, N. (2010). Optimization of third generation biofuels production: biodiesel from microalgae oil by homogeneous transesterification, Chemical Engineering Transactions, 21: 1201-1206.

Pyle, D. (2008). Use of biodiesel-derived crude glycerol for the production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum. M. Sc. Thesis, Faculty of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Virginia, 72.

Pyle, D., Garcia, R. & Wen, Z. (2008). Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agricul. Food Chem., 56(11), 3933-3939.

Quiao, H. & Wang, G. (2009). Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J. Oceanol. Limnol., 27(4), 762-768.

Richmond, A. (1986). Microalgae of economic potential. In: Richmond, A. (Ed.), Handbook of Microalgal Mass Culture. Boca Raton, Florida: CRC Press, Inc.199-243.

Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. & Tredici, M.R., (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102(1), 100–112.

Schenk, P., Thomas, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., Kruse, O. & Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg. Res.,1: 20–43.

Song, D., Fu, J. & Shi, D. (2008). Exploitation of oil-bearing microalgae for biodiesel. Chinese J. Biotechnol., 24(3), 341–348.

Statsoft Inc (2011). STATISTICA 10. [Programa informático]. Disponible en: http://www.statsoft.com/

Suh, I.S., & Lee, C. (2003). Photobioreactor engineering: design and performance. Biotechnol. Biopro. Eng., 8(6), 313-321.

Syrett, P., Bocks, S. & Merrett, M. (1964). The Assimilation of Acetate by Chlorella vulgaris. J Exp. Bot, 15(1), 35-47

Vicente, G., Martínez, M. & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol., 92(3), 297-305.

Wang, H., Fu, R. & Pei,G. (2012). A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr. J. Microbiol. Res., 6(5), 1041-1047.

Williams, P. B. (2007). Biofuel: microalgae cut the social and ecological costs. Nature, 450(7169), 478.

Williams, P. & Laurens, L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci., 3(5), 554-590.

Zar, J. (1999). Biostatistical analysis. New Jersey: Prentice Hall (4th Ed.).
How to Cite
Estévez-Landazábal, L.-L., Barajas-Solano, A.-F., Barajas-Ferreira, C., & Kafarov, V. (2020). Improvement of lipid productivity on chlorella vulgaris using waste glycerol and sodium acetate . CT&F - Ciencia, Tecnología Y Futuro, 4(2), 113-126. Retrieved from https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/207

Downloads

Download data is not yet available.
Published
2020-04-15
Section
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)