Microalgae based biorefinery: Issues to consider

  • Ángel Darío González Delgado Universidad Industrial de Santander, Bucaramanga, Colombia
  • Viatcheslav Kafarov Universidad Industrial de Santander, Bucaramanga, Colombia
Keywords: Biofuels, Biomass processing, Bioindustries, Biomass, Microalgae, Biorefinery


Biorefining is sustainable biomass processing to obtain energy, biofuels and high value products through processes and equipment for biomass transformation. The biorefinery concept has been identified as the most promising way to create a biomass-based industry. Microalgae are classified as promising candidates in biorefinery processes because they are particularly important for obtaining multiple products.  This review article describes the biorefinery concept taking into account its different interpretations and comparing it with the traditional biomass transformation processes.  It describes the general characteristics of microalgae, and their potential to be used as a raw material in the biorefinery process.  The review focuses on the state of the art of products obtained from microalgae for the biofuel industry, mainly for biodiesel production, and the different methods to extract oil for biodiesel production as well as other products.  Based on this information, several aspects are suggested to be taken into account for the development of a topology for a microalgae-based biorefinery.


Acién, F., García, F., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol.,70(1): 231-247.

Álvarez, Y., González, A., & Kafarov, V. (2011).Development of a methodology for microalgae oil extraction with ethanol/hexane using thermal and chemical cell disruption.The First International Conference on Algal Biomass, Biofuels and Byproducts, St Louis, United States.P3-24.

Amin, M., &Wijffels, R. (2004).Milking of microalgae. Trends. Biotechnol.,22 (4): 189–194.

Amin, S. (2009). Review on biofuel oil and gas production processes from microalgae. Energy Convers.Manage., 50(7): 1834–1840.

Amaro, H., Guedes, C., & Malcata X. (2011).Advances and perspectives in using microalgae to produce biodiesel, Applied Energy, 88 (10): 3402-3410.

Anderson, J., &Sorek, B. (2008). Microalgae: the fuel of tomorrow. Ninth Annual Freshman Conference.Pittsburgh, Pennsylvania, United States. 9112:C7

Berrios, M., Martín, M.A., Chica, A.F.,& Martín, A. (2010).Study of esterification and transesterification in biodiesel production from used frying oils in a closed system, Chem. Eng. J. 160(2): 473–479.

Biofuels Research Advisory Council. (2006). Biofuels in the European union: A vision
for 2030 and beyond. Final draft report.Luxembourg, German: European Communities.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37 (8): 911-917.

Bush, R. A., & Hall, K. M. (2006). Process for the production of ethanol from algae. U.S. Patent 7,135,308.

Carriquiry, M., Xiaodong D., & Govinda R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7): 4222-4234.

Cherubini, F. (2010).The biorefinery concept: using biomass instead of oil forproducing energy and chemicals. Energy Convers.Manage.,51(7):1412–1421.

Chen, C. Y., Yeh, K. L., Aisyah,R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technol., 102(1): 71-81.

Chester, T.L.,& Pinkston, J.D. (2004).Supercritical fluid and unified chromatography, Anal. Chem. 76(16): 4606–4613.

Cheung, P. C. K., (1999). Temperature and pressure effects on supercritical carbon dioxide extraction of n_3 fatty acids from red seaweed.Food Chemistry, 65(3): 399–403.

Chisti, Y., (2007). Biodiesel from microalgae, Biot. Adv. 25(3): 294-306.

Chisti, Y., (2008). Biodiesel from microalgae beats bioethanol. TrendsBiotechnol., 26(3): 126–131.

Clarens, A., Resurreccion, E. P., White, M. A., & Colosi, L. A., (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol., 44(5):1813–1819.

Córdoba, L.S., Lopez, L. M., González, A. D., & Kafarov, V. (2010). Microalgae lipid extraction by combining cell disruption and Soxhlet extraction method for biodiesel production. (inspanish). XXIX Latin American Chemistry Congress, Cartagena, Colombia. ISBN 978-958-99607-0-7: MYE 113.

Craggs, R., McAuley, P., & Smith, V. (1997). Wastewater nutrient removal by marine microalgae grown on a corrugated raceway, Water Research, 31(7): 1701-1707.

Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason.Sonochem., 15(5): 898-902.

Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., & Forde, G. M. (2009). Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol., 84(7): 1078-1083.

de-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technol.,101(6):1611–1627.

Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manage., 49(8): 2106–2116.

Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Convers. Manage., 50(1): 14-34.

Dias,M. O. S., Modesto, M., Ensinas, A. V., Nebra S. A., MacielFilho, R., &Rossell, C. E.V. (2010). Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems, Energy, 36(6): 3691-3703.

Ehimen, E. A., Sun, Z. F., &Carrington, C. G. (2010).Variables affecting the in situ transesterification of microalgae lipids.Fuel, 89(3): 677-684.

Folch, J., Lees, M. & Stanley, G. H. S. (1957).A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497-509.

Fore, S. R., Lazarus, W., Porter, P., & Jordan, N. (2011). Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels. Biomass Bioenergy, 35(1): 193-202.

Franceschin, G., Zamboni, A., Bezzo, F., &Bertucco, A. (2008). Ethanol from corn: a technical and economical assessment based on different scenarios. Chem. Eng. Res. Des., 86(5): 488-498.

Garibay Hernández A., Vázquez-Duhalt R., Sánchez Saavedra M., Serrano Carreón L., &Martinez Jiménez A. (2009). Biodiesel a partir de microalgas. BioTecnología, 13(3): 38-56.

Gerbens-Leenes, W., Hoekstra, A. Y., & Meer, van der T. H., (2009). The water footprint of bioenergy. PNAS, 106(25): 10219–10223.

Goh, C.S.,& Lee, K.T. (2011). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew.Sust.Energ. Rev., 14(2): 842-848.

Goldemberg, J., Coelho, S.T., & Guardabassi, P. (2008).The sustainability of ethanol production from sugarcane.Energy Policy, 36(6): 2086–2097.

Gong, B. (2002). Components of Chlorella pyrenoidosa, Gong Bih Enterprise Limited Company [scan de certificado de caracterización]. [consultado mayo 5, 2011]. Disponible en

González, A. D. & Kafarov, V. (2010). Design of a multifunctional reactor for third generation biofuels production.Chem. Eng.Transact., 21(1): 1297-1302.

Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., &Herbertson, J. (2009).Thermal characterisation of microalgae under slow pyrolysis conditions.J. Anal. Appl. Pyrolysis, 85(1–2): 118–123.

Harun, R.,& Danquah M. (2011).Enzymatic hydrolysis of microalgal biomass for bioethanol production.Chem. Eng. J., 168(3): 1079-1084.

Harun, R., Singh, M., Forde, G., &Danquah, M. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renew.Sust.Energ. Rev., 14(3): 1037–1047.

Henriques, M., Silva, A., & Rocha, J. (2007). Extraction and quantification of pigments from a marine: A simple and reproducible method. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 1(1): 586-593.

Herrero, M., Ibáñez, E., Señoráns, F. J., & Cifuentes, A. (2003). Accelerated solvent extracts from Spirulinaplatensis Microalgae: determination of their antioxidant activity and analysis by MicellarElectrokinetic Chromatography. J. Chromatogr., 1047(2): 195–203.

Herrero M., Cifuentes A., & Ibáñez E. (2006).Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 98 (1): 136-148.

Hincapié, G., Mondragón, F., & López, D. (2011). Conventional and in situ transesterification of castor seed oil for biodiesel production. J. Fuel, 90(4):1618-1623.

Hoekman, S. K. (2009). Biofuels in the U.S. challenges and opportunities.Renew. Energy, 34(1): 14-22.

Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009).The future of anaerobic digestion and biogas utilization.Bioresource. Technol., 100(22): 5478–5484.

Huang, J., Chen, F., &Sandmann, G. (2006).Stress-related differential expression of multiple [beta]-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis.J.Biotechnol., 122(2): 176–185.

IEA. (2008). IEA bioenergy Task 42 on biorefineries: co-production of fuels, chemicals, power and materials from biomass. Minutes of the third Task meeting.International Energy Agency. [Documento de texto]. [Consultado mayo 5, 2011]. Disponible en http://www.biorefinery.nl/ieabioenergy-task42/.

Kamm, B., Kamm, M., Gruber, P.R., &Kromus, S. (2006). Biorefinery systems – an overview. In: Kamm B, Gruber PR, &Kamm M, editors. Biorefineries – industrial processes and products: Status quo and future directions (Vol. 1. Weinheim, Germany.: Wiley-VCHVerlag GmbH.

King, J. (2000). Advances in critical fluid technology for food processing.Food. Sci. Tech. Today, 14(4): 186–191.

Kumar, P., Barrett, D. M., Delwiche, M .J., &Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8): 3713–3729.

Lee, S.J., Yoon, B.D.,& Oh, H.M. (1998), Rapid method for the determination of lipid from the green alga Botryococcus braunii, Biotechnol. Tech., 12(7): 553–556.

Lee, J-Y., Yoo, C., Jun, S-Y., Ahn, C-Y.,& Oh, H-M.(2010). Comparison of several methods foreffective lipid extraction from microalgae. Bioresource. Technol., 101(1): 575–577.

Li, Y., Ruan, R., Chen, P. L., Liu, Z., Pan, X., & Lin, X. (2004). Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans. ASAE 47(3): 821–825.

Li, Y.Q., Horsman, M., Wang, B., Wu, N., &Lan, C.Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81(4): 629–636.

Manirakiza, P., Covaci, A., &Schepens, P. (2001).Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods.J. Food. Acid Gas Anal., 14(1): 93–100.

Mata, T. M., Martins, A. A., &Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy. Rev., 14(1):217–232.

Martinez, M., Sánchez, S., Jiménez, J., El Yousfi, F., & Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus.Bioresource. Technol., 73(3): 263-272.

Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15(1): 1577–1600.

Mendes-Pinto, M., Raposo, M., Bowen, J., Young, A., &Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects onastaxanthin recovery and implications for bio-availability. J. App. Phycol., 13(1): 19-24.

Mendes, R. L., Fernandes, H. L., Coelho, J. P., Reis, E. C., Cabral, J. M. S., &Novais, J. M. (1995). Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris.Food Chemistry, 53(1): 99–103.

Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P., &Palabra, A. F. (2003).Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae.Inorg.Chim.Acta, 356(1): 328–334.

Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q.,& Xian, M. (2009).Biodiesel production from oleaginous microorganisms. Renew. Energy. 34(1):1–5.

Minowa, T., Yokoyama, S., Kishimoto, M., &Okakurat, T. (1995).Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction J. Fuel, 74(12): 1735–1738.
Moen, E. (2008). Biological degradation of brown seaweeds. The potential of marine biomass for anaerobic biogas production. Scottish Association for Marine Science Oban. Argyll, Scotland.

Molina Grima, E., Robles Medina, A., GiménezGiménez, A., Sánchez Pérez, J., García Camacho, F., &García Sánchez, J. (1994).Comparison between extraction of lipids and fatty acids from microalgal biomass, J. Am. Oil Chem. Soc., 71(9): 955-959.

Molina, E., Fernández, J., Acién, F., &Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. J. Biotechnol., 92(2): 113-131.

Mortimer, N. D., Elsayed, M.A., & Horne, R.E., (2004). Energy and greenhouse gas emissions for bioethanol production from wheat grain and sugar beet. Final Report. UK: British Sugar Plc. [documento de texto]. [consultado mayo 5, 2011]. Disponible en http://www.northenergy.co.uk/c/pdf/ Resources_Research_Unit-Work_for_British_Sugar-2_1.pdf.

Mueller, S., Anderson, J., &Wallington, T. (2011). Impact of biofuel production and other supply and demand factors on food price increases in 2008, Biomass Bioenergy, 35(5): 1623-1632.

Mussgnug, J., Klassen V., Schlüter A., & Kruse, O. (2010).Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.J. Biotechnol., 150(1): 51-56.

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K.(2010).Production of first and second generation biofuels: a comprehensive review.Renew.Sust.Energ. Rev., 14(2): 578-597.

Nigam, P., & Singh, A. (2011).Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci., 37(1): 52-68.

Ojeda, K., Ávila, O., Suarez, J., & Kafarov, V. (2010). Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production – part 1. Chem. Eng. Res. Des., 89(3): 270-279.

Olivares-Carrillo, P., & Quesada-Medina, J. (2011), Synthesis of biodiesel from soybean oil using supercritical methanol in a one-step catalyst-free process in batch reactor.J. Supercrit. Fluid.,58(3): 378-384.

Otsuka, K., & Yoshino, A., (2004). A fundamental study on anaerobic digestion of sea lettuce. Ocean’04 – MTS/IEEE Techno-Ocean’04: Bridges across the Oceans – Conference Proceedings. Ocean’04 – MTS/IEEE Techno-Ocean’04. [Documento de texto]. [Consultado mayo 5, 2011]. Disponible en jsp?arnumber=1406392&tag=1>

Peralta, Y., Sanchez, E., & Kafarov, V. (2010). Exergy analysis for third generation biofuel production from microalgae biomass. Chem. Eng.Transact., 21(1): 1363-1368.

Pernet, F., & Tremblay, R. (2003). Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids, 38(11): 1191–1195.

Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology. Ames, Iowa, Unites States: Blackwell Science.

Robles Medina, A., Molina Grima, E., GiménezGiménez, A., &Ibáñez González, M. J. (1998), Downstream processing of algal polyunsaturated fatty acids. Biotech. Adv., 16 (3): 517-580.

Santana, G. C. S., Martins, P. F., de Lima da Silva, N., Batistella, C. B., Maciel Filho, R., Wolf Maciel, M. R., (2010)., Simulation and cost estimate for biodiesel production using castor oil. Chem. Eng. Res. Des., 88(5-6): 626-632.

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hays, D., & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867): 1238–1240.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E. Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. &Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg. Res., 1(1): 20–43.

Schumann, R., Häubner, N., Klausch, S., &Karsten, U. (2005).Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades.Int. Biodeter. Biodegr. 55(3): 213–222.

Shi, D., Deng, Y., & Zhao, X. (2004).Cyanobacterial genetic engineering technology for recombinant pharmaceutical products.2004 National Medicine Bioengineering Seminar of Chinese Society of Biotechnology: 54.

Singh, S.P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew. Sustain. Energ. Rev., 14(1): 200–216.

Spath, P.L., & Dayton, D.C. (2003). Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL task no. BBB3.4210, Colorado. EstadosUnidos.

Taylor, G. (2008). Biofuels and biorefinery concept. Energy Policy 36(12):4406–4409.

Ueda, R., Hirayama, S., Sugata, K., & Nakayama, H. (1996). Process for the production of ethanol from microalgae. U.S. Patent 5,578,472.

Vazquez-Duhalt, R., &Arredondo-Vega, B.(1991). Haloadaptation of the green alga Botryococcus braunii (race a).Phytochemistry, 30(9): 2919-2925.

Ward, O. P., &Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochem., 40 (12): 3627-3652.

Wilkie, A.,&Mulbry, W. (2002).Recovery of dairy manure nutrients by benthic freshwater algae.Bioresour. Technol., 84(1): 81-91.

Wyman, C.E. (2001). Economics of a biorefinery for coproduction of succinic acid, ethanol, and electricity.Abstracts of Papers of the American Chemical Society.221 P. U119-U119 . Part 1 Meeting Abstract: 72-BIOT.

Xiong, W., Fu, Y., Zeng, F., & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Process. Tech., 92(8): 1599-1605.

Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 126(4):499-507.

Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technol., 102(1): 159-165.

Yusuf, N. N. A. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Convers. Manage., 52(7): 2741-2751.
How to Cite
González Delgado, Ángel D., & Kafarov, V. (2011). Microalgae based biorefinery: Issues to consider. CT&F - Ciencia, Tecnología Y Futuro, 4(4), 05-21. https://doi.org/10.29047/01225383.225


Download data is not yet available.
Review Articles

Most read articles by the same author(s)