Sensitivity analysis of the backprojection imaging method for seismic event location

Keywords: BackProjection Imaging, Seismic event location, sensitivity analysis

Abstract

Accuracy of earthquake location methods is dependent upon the quality of input data. In the real world, several sources of uncertainty, such as incorrect velocity models, low Signal to Noise Ratio (SNR), and poor coverage, affect the solution. Furthermore, some complex seismic signals exist without distinguishable phases for which conventional location methods are not applicable. In this work, we conducted a sensitivity analysis of Back-Projection Imaging (BPI), which is a technique suitable for location of conventional seismicity, induced seismicity, and tremor-like signals. We performed a study where synthetic data is modelled as fixed spectrum explosive sources. The purpose of using such simplified signals is to fully understand the mechanics of the location method in controlled scenarios, where each parameter can be freely perturbed to ensure that their individual effects are shown separately on the outcome. The results suggest the need for data conditioning such as noise removal to improve image resolution and minimize artifacts. Processing lower frequency signal increases stability, while higher frequencies improve accuracy. In addition, a good azimuthal coverage reduces the spatial location error of seismic events, where, according to our findings, depth is the most sensitive spatial coordinate to velocity and geometry changes.

References

Rawlinson, N., Hauser, J., & Sambridge, M. (2008). Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics, 49, 203-273. https://doi.org/10.1016/S0065-2687(07)49003-3

Eisner, L., Duncan, P. M., Heigl, W. M., & Keller, W. R. (2009). Uncertainties in passive seismic monitoring. The Leading Edge, 28(6), 648-655. https://doi.org/10.1190/1.3148403

Fink, M. (1999). Time-reversed acoustics. Scientific American, 281(5), 91-97.

Artman, B., Podladtchikov, I., & Witten, B. (2010). Source location using time‐reverse imaging. Geophysical Prospecting, 58(5), 861-873. https://doi.org/10.1111/j.1365-2478.2010.00911.x

Horstmann, T., Harrington, R. M., & Cochran, E. S. (2015). Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California. Geophysical Journal International, 203(2), 1207-1226. https://doi.org/10.1093/gji/ggv337

Nakata, N., & Beroza, G. C. (2016). Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics, 81(2), KS51-KS60. https://doi.org/10.1190/geo2015-0278.1

Nakata, N., Beroza, G., Sun, J., & Fomel, S. (2016). Migration-based passive-source imaging for continuous data. In SEG Technical Program Expanded Abstracts 2016 (pp. 2607-2611). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13959132.1

Sun, J., Xue, Z., Zhu, T., Fomel, S., & Nakata, N. (2016). Full-waveform inversion of passive seismic data for sources and velocities. In SEG Technical Program Expanded Abstracts 2016 (pp. 1405-1410). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13959115.1

Beskardes, G. D., Hole, J. A., Wang, K., Michaelides, M., Wu, Q., Chapman, M. C., ... & Quiros, D. A. (2018). A comparison of earthquake backprojection imaging methods for dense local arrays. Geophysical Journal International, 212(3), 1986-2002. https://doi.org/10.1093/gji/ggx520

Warpinski, N. (2009). Microseismic monitoring: Inside and out. Journal of Petroleum Technology, 61(11), 80-85. https://doi.org/10.2118/118537-JPT

Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., & Keller, W. (2010). Comparison of surface and borehole locations of induced seismicity. Geophysical Prospecting, 58(5), 809-820. https://doi.org/10.1111/j.1365-2478.2010.00867.x

Gesret, A., Desassis, N., Noble, M., Romary, T., & Maisons, C. (2015). Propagation of the velocity model uncertainties to the seismic event location. Geophysical Journal International, 200(1), 52-66. https://doi.org/10.1093/gji/ggu374

Willacy, C., van Dedem, E., Minisini, S., Li, J., Blokland, J. W., Das, I., & Droujinine, A. (2018). Application of full-waveform event location and moment-tensor inversion for Groningen induced seismicity. The Leading Edge, 37(2), 92-99. https://doi.org/10.1190/tle37020092.1

Werner, C. & Saenger, E. H. (2018). Obtaining reliable localizations with Time Reverse Imaging: limits to array design, velocity models, and signal-to-noise ratios. Solid Earth Discussions, 9(6):1487-1505. https://doi.org/10.5194/se-2018-76

Gajewski, D., & Tessmer, E. (2005). Reverse modelling for seismic event characterization. Geophysical Journal International, 163(1), 276-284. https://doi.org/10.1111/j.1365-246X.2005.02732.x

Lokmer, I., O'Brien, G. S., Stich, D., & Bean, C. J. (2009). Time reversal imaging of synthetic volcanic tremor sources. Geophysical Research Letters, 36(12). https://doi.org/10.1029/2009GL038178

Liao, Y. C., Kao, H., Rosenberger, A., Hsu, S. K., & Huang, B. S. (2012). Delineating complex spatiotemporal distribution of earthquake aftershocks: An improved source-scanning algorithm. Geophysical Journal International, 189(3), 1753-1770. https://doi.org/10.1111/j.1365-246X.2012.05457.x

Wang, H., Li, M., & Shang, X. (2016). Current developments on micro-seismic data processing. Journal of Natural Gas Science and Engineering, 32, 521-537. https://doi.org/10.1016/j.jngse.2016.02.058

Červený, V. (1987). Ray tracing algorithms in three-dimensional laterally varying layered structures. In Seismic tomography (pp. 99-133). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3899-1_5

Vidale, J. E. (1990). Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55(5), 521-526. https://doi.org/10.1190/1.1442863

Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only. Bull. St. Louis Univ, 8(1), 56-71.

Lee, W. H. K., & Lahr, J. C. (1972). HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes (p. 100). US Department of the Interior, Geological Survey, National Center for Earthquake Research. https://doi.org/10.3133/ofr72224

Lahr, J. C. (1979). Hypoellipse: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern. U.S. Geological Survey Open-File Report, pp. 79-431, 1979. https://doi.org/10.3133/ofr79431

Kao, H., & Shan, S. J. (2004). The source-scanning algorithm: Mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589-594. https://doi.org/10.1111/j.1365-246X.2004.02276.x

Yoon, K., Shin, C., Suh, S., Lines, L. R., & Hong, S. (2003). 3D reverse-time migration using the acoustic wave equation An experience with the SEG/EAGE data set. The Leading Edge, 22(1), 38-41. https://doi.org/10.1190/1.1542754

Zhu, J., & Lines, L. R. (1998). Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures. Geophysics, 63(4), 1166-1176. https://doi.org/10.1190/1.1444416

Jiang, Z., Bonham, K., Bancroft, J. C., & Lines, L. R. (2009). Overcoming computational cost problems of reverse-time migration. In Proc. Annual CREWES Sponsors Meeting.

Sinha, D. P., Vishnoi, D. K., Basu, S., & Singh, V. P. (2009). A brief comparison of the efficacy of four migration algorithms–a sub-basalt example. Geohorizons, SPG. India, 24-27.

D Gajewski, D., Anikiev, D., Kashtan, B., Tessmer, E., & Vanelle, C. (2007). Localization of seismic events by diffraction stacking. In SEG Technical Program Expanded Abstracts 2007 (pp. 1287-1291). Society of Exploration Geophysicists. https://doi.org/10.1190/1.2792738

Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64(2), 516-523. https://doi.org/10.1190/1.1444558

Sethian, J. A. (1999). Fast marching methods. SIAM review, 41(2), 199-235. https://doi.org/10.1137/S0036144598347059

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), 1591-1595. https://doi.org/10.1073/pnas.93.4.1591

Baker, T., Granat, R., & Clayton, R. W. (2005). Real-time earthquake location using Kirchhoff reconstruction. Bulletin of the Seismological Society of America, 95(2), 699-707. https://doi.org/10.1785/0120040123

Anikiev, D., Valenta, J., Staněk, F., & Eisner, L. (2014). Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing. Geophysical Journal International, 198(1), 249-258. https://doi.org/10.1093/gji/ggu126

Rentsch, S., Buske, S., Lüth, S., & Shapiro, A. (2007). Fast location of seismicity: A migration-type approach with application to hydraulic-fracturing data. Geophysics, 72(1), S33-S40. https://doi.org/10.1190/1.2401139

J Pesicek, J. D., Child, D., Artman, B., & Cieślik, K. (2014). Picking versus stacking in a modern microearthquake location: Comparison of results from a surface passive seismic monitoring array in OklahomaPicking versus stacking for microseismic. Geophysics, 79(6), KS61-KS68. https://doi.org/10.1190/geo2013-0404.1

How to Cite
Murillo Martínez, C. A., & Agudelo, W. M. (2021). Sensitivity analysis of the backprojection imaging method for seismic event location. CT&F - Ciencia, Tecnología Y Futuro, 11(1), 21-32. https://doi.org/10.29047/01225383.167

Downloads

Download data is not yet available.
Published
2021-06-30
Section
Scientific and Technological Research Articles
Crossref Cited-by logo