An additional layer of protection through superalarms with diagnosis capability

  • John William Vásquez Capacho Universidad de Investigación y Desarrollo- UDI
  • Carlos Gustavo Perez Zuñiga Pontifica Universidad Católica del Perú- PUCP
  • Yecid Alfonzo Muñoz Maldonado Universidad Autónoma de Bucaramanga- UNAB
  • Adalberto José Ospino Castro Universidad de la Costa - CUC
Keywords: Alarm management, Protection layers, Safe process, Diagnosis, Super-alarm

Abstract

An alarm management methodology can be proposed as a discrete event sequence recognition problem where time patterns are used to identify the process safe condition, especially in the start-up and shutdown stages. Industrial plants, particularly in the petrochemical, energy, and chemical sectors, require a combined approach of all the events that can result in a catastrophic accident. This document introduces a new layer of protection (super-alarm) for industrial processes based on a diagnostic stage. Alarms and actions of the standard operating procedure are considered discrete events involved in sequences, where the diagnostic stage corresponds to the recognition of a special situation when these sequences occur. This is meant to provide operators with pertinent information regarding the normal or abnormal situations induced by the flow of alarms. Chronicles Based Alarm Management (CBAM) is the methodology used to build the chronicles that will permit to generate the super-alarms furthermore, a case study of the petrochemical sector using CBAM is presented to build the chronicles of the normal startup, abnormal start-up, and normal shutdown scenarios. Finally, the scenario validation is performed for an abnormal start-up, showing how a super-alarm is generated.

References

R. W. Brennan, Toward real-time distributed intelligent control: A survey of research themes and applications, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37 (5) (2007) 744–765. doi:10.1109/TSMCC.2007.900670.

M. Khalgui, O. Mosbahi, Z. Li, H. Hanisch, Reconfigura tion of distributed embedded-control systems, IEEE/ASME Transactions on Mechatronics 16 (4) (2011) 684–694. doi:10.1109/TMECH.2010.2050697.

D. J. Reifer, Software failure modes and effects analysis, IEEE Transactions on Reliability R-28 (3) (1979) 247–249. doi:10.1109/TR.1979.5220578.

M. G. Mehrabi, A. G. Ulsoy, Y. Koren, Reconfigurable manufacturing systems: Key to future manufacturing, Journal of Intelligent Manufacturing 11 (4) (2000) 403–419. doi:10.1023/A:1008930403506. URL https://doi.org/10.1023/A:1008930403506

V. Rodrigo, M. Chioua, T. Hagglund, M. Hollender, Causal analysis for alarm flood reduction, IFAC-PapersOnLine 49 (7) (2016) 723 – 728, 11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016. doi:https://doi.org/10.1016/j.ifacol.2016.07.269.

L. Bodsberg, P. Hokstad, Alarm and shutdown frequencies in offshore production, IFAC Proceedings Volumes 21 (15) (1988) 19 – 25, Ifac Workshop on Industrial Process Control Systems, Bruges, Belgium, 28 30 September. doi:https://doi.org/10.1016/S1474-6670(17)54672-8.

C. Agudelo, F. Morant Anglada, E. Quiles Cucarella, E. Garca Moreno, Secuencias de alarmas para detecci´on y diagno´stico de fallos, Revista Colombiana de Computaci´on 12 (2) (2011) 31–44. doi:10.29375/25392115.1798.

C. Agudelo, Integracio´n de t´ecnicas y las secuencias de alarmas para la deteccio´n y el diagnostico de fallos, Ph.D. thesis, Universidad Politecnica de Valencia (2016). doi:doi:10.4995/Thesis/10251/63450. URL https://riunet.upv.es/handle/10251/63450

J. W. Vásquez Capacho, Chronicle Based Alarm Management, The ses, INSA Toulouse, these en cotutelle avec l’Universidad de los Andes, Colombie (Oct. 2017). URL https://hal.laas.fr/tel-02059631

L. Magni, R. Scattolini, C. Rossi, A fault detection and isolation method for complex industrial systems, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 30 (6) (2000) 860–865. doi:10.1109/3468.895922.

M. Hollender, T. Skovholt, J. Evans, Holistic alarm management throughout the plant lifecycle, in: 2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe), 2016, pp. 1–6. doi:10.1109/PCICEurope.2016.7604645.

R. Patton, J. Chen, Observer-based fault detection and isolation: Robustness and applications, Control Engineering Practice 5 (5) (1997) 671 – 682. doi:https://doi.org/10.1016/S0967-0661(97)00049-X.

R. C. de Vries, An automated methodology for generating a fault tree, IEEE Transactions on Reliability 39 (1) (1990) 76–86. doi:10.1109/24.52615.

F. Yang, D. Xiao, Progress in root cause and fault propagation analysis of large-scale industrial processes, Journal of Control Science and Engineering, 2012doi:https://doi.org/10.1155/2012/478373.

M. H. Sarmiento, N. C. Isaza, Identification and estimation of functional states in drinking water plant based on fuzzy clustering, in: I. D. L. Bogle, M. Fairweather (Eds.), 22nd European Symposium on Computer Aided Process Engineering, Vol. 30 of Computer Aided Chemical Engineering, Elsevier, 2012, pp. 1317 – 1321. doi:https://doi.org/10.1016/B978-0-444-59520-1.50122-6.

Y. Chen, J. Lee, Autonomous mining for alarm correlation patterns based on time-shift similarity clustering in manufacturing system, in: 2011 IEEE Conference on Prognostics and Health Management, 2011, pp. 1–8. doi:10.1109/ICPHM.2011.6024351.

A. Zolghadri, J. Cieslak, D. Efimov, D. Henry, P. Goupil, R. Dayre, A. Gheorghe, H. Leberre, Signal and model-based fault detection for aircraft systems, IFAC-PapersOnLine 48 (21) (2015) 1096 – 1101, 9th IFAC Symposium on Fault Detection, Super vision and Safety for Technical Processes SAFEPROCESS 2015. doi:https://doi.org/10.1016/j.ifacol.2015.09.673.

V. John, P. Jorge, A. Carlos, J. Jos, Analysis of alarm management in startups and shutdowns for oil refining processes, in: 2013 II International Congress of Engineering Mechatronics and Automation (CIIMA), 2013, pp. 1–6. doi:10.1109/CIIMA.2013.6682784.

P. Mishra, D. R. Samartha, N. Pathak, S. K Jain, S. Banerjee, K. K Maudar, Bhopal gas tragedy: Review of clinical and experimental findings after 25 years, International journal of occupational medicine and environmental health 22 (2009) 193–202. doi:10.2478/v10001-009 0028-1.

P. Hokstad, K. Corneliussen, Loss of safety assessment and the iec 61508 standard, Reliability Engineering System Safety 83 (1) (2004) 111 – 120. doi:https://doi.org/10.1016/j.ress.2003.09.017.

R. Brooks, R. Thorpe, J. Wilson, A new method for defining and managing process alarms and for correcting process operation when an alarm occurs, Journal of Hazardous Materials 115 (1) (2004) 169 – 174, a Collection of Papers Presented at the Annual Symposium of the Mary Kay O’Connor Process Safety Centre, Texas A and M University, College Statis, TX, United States, 28-29 October, 2003. doi:https://doi.org/10.1016/j.jhazmat.2004.05.040.

I. Izadi, S. L. Shah, D. S. Shook, T. Chen, An introduction to alarm analysis and design, IFAC Proceedings Volumes 42 (8) (2009) 645 – 650, 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. doi:https://doi.org/10.3182/20090630-4-ES-2003.00107.

S. R. Kondaveeti, I. Izadi, S. L. Shah, D. S. Shook, R. Kadali, T. Chen, Quantification of alarm chatter based on run length distributions, Chemical Engineering Research and Design 91 (12) (2013) 2550 – 2558. doi:https://doi.org/10.1016/j.cherd.2013.02.028.

P. Urban, L. Landryov, Identification and evaluation of alarm logs from the alarm management system, in: 2016 17th International Carpathian Control Conference (ICCC), 2016, pp. 769–774. doi:10.1109/CarpathianCC.2016.7501199.

S. D. Treville, J. Antonakis, N. M. Edelson, Can standard operating procedures be motivating? reconciling process variability issues and behavioural outcomes, Total Quality Management & Business Excellence 16 (2) (2005) 231–241. arXiv:https://doi.org/10.1080/14783360500054236, doi: 10.1080/14783360500054236. URL https://doi.org/10.1080/14783360500054236

S. Sklet, Safety barriers: Definition, classification, and performance, Journal of Loss Prevention in the Process Industries 19 (5) (2006) 494 – 506. doi:https://doi.org/10.1016/j.jlp.2005.12.004.

A. M. Dowell III, Layer of protection analysis and inherently safer processes, Process Safety Progress 18 (4) 214–220. arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/prs.680180409, doi:10.1002/prs.680180409.

J. M. Koscielny, M. Bartys, The requirements for a new layer in the industrial safety systems, IFAC-PapersOnLine 48 (21) (2015) 1333 – 1338, 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2015. doi:https://doi.org/10.1016/j.ifacol.2015.09.710.

R. Isermann, Model-based fault-detection and diagnosis status and applications, Annual Reviews in Control 29 (1) (2005) 71 – 85. doi:https://doi.org/10.1016/j.arcontrol.2004.12.002.

R. Isermann, On the applicability of model-based fault detection for technical processes, Control Engineering Practice 2 (3) (1994) 439 – 450. doi:https://doi.org/10.1016/0967-0661(94)90781-1.

M. Bayoudh, L. Trav´e-Massuy`es, X. Olive, Hybrid systems diagnosis by coupling continuous and discrete event techniques, IFAC Proceedings Volumes 41 (2) (2008) 7265 – 7270, 17th IFAC World Congress. doi:https://doi.org/10.3182/20080706-5-KR-1001.01229.

Z. Gao, C. Cecati, S. X. Ding, A survey of fault diagnosis and fault tolerant techniquespart i: Fault diagnosis with model-based and signal based approaches, IEEE Transactions on Industrial Electronics 62 (6) (2015) 3757–3767. doi:10.1109/TIE.2015.2417501.

A. Subias, L. Travé-Massuyes, E. L. Corronc, Learning chronicles signing multiple scenario instances, IFAC Proceedings Volumes 47 (3) (2014) 10397 – 10402, 19th IFAC World Congress. doi:https://doi.org/10.3182/20140824-6-ZA-1003.02579.

D. Beebe, S. Ferrer, D. Logerot, The connection of peak alarm rates to plant incidents and what you can do to minimize, Process Safety Progress 32 (1) 72–77. arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/prs.11539, doi:10.1002/prs.11539.

J. Zhu, Y. Shu, J. Zhao, F. Yang, A dynamic alarm management strategy for chemical process transitions, Journal of Loss Prevention in the Process Industries 30 (2014) 207 – 218. doi:https://doi.org/10.1016/j.jlp.2013.07.008.

J. V. Capacho, A. Subias, L. Trav´e-Massuy`es, F. Jimenez, Alarm management via temporal pattern learning, Engineering Applications of Artificial Intelligence 65 (2017) 506 – 516. doi:https://doi.org/10.1016/j.engappai.2017.07.008.

J. Vásquez, L. Travé-Massuyes, A. Subias, F. Jimenez, Enhanced chronicle learning for process supervision, IFAC-PapersOnLine 50 (1) (2017) 5035 – 5040, 20th IFAC World Congress. doi:https://doi.org/10.1016/j.ifacol.2017.08.924.

J. W. Vasquez, L. Travé-Massuyes, A. Subias, F. Jiménez, C. Agudelo, Chronicle based alarm management in startup and shutdown stages, in: 26th International Workshop on Principles of Diagnosis, Paris, France, 2015, pp. 277–280. URL https://hal.laas.fr/hal-01847469

J. Vásquez, L. Travé-Massuyes, A. Subias, F. Jimenez, C. Agudelo, Alarm management based on diagnosis, IFAC PapersOnLine 49 (5) (2016) 126 – 131, 4th IFAC Conference on Intelligent Control and Automation SciencesICONS 2016. doi:https://doi.org/10.1016/j.ifacol.2016.07.101.

M. odile Cordier, C. Dousson, Alarm driven monitoring based on chronicles, IFAC Proceedings Volumes 33 (11) (2000) 291 – 296, 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes 2000 (SAFEPROCESS 2000), Budapest, Hungary, 14-16 June 2000. doi: https://doi.org/10.1016/S1474-6670(17)37375-5.

R. Pons, A. Subias, L. Travé-Massuyes, Iterative hybrid causal model based diagnosis: Application to automotive embedded functions, Engineering Applications of Artificial Intelligence 37 (2015) 319 – 335. doi:https://doi.org/10.1016/j.engappai.2014.09.016.

How to Cite
Vásquez Capacho, J. W., Perez Zuñiga, C. G., Muñoz Maldonado, Y. A., & Ospino Castro, A. J. (2020). An additional layer of protection through superalarms with diagnosis capability. CT&F - Ciencia, Tecnología Y Futuro, 10(1), 45-65. https://doi.org/10.29047/01225383.168

Downloads

Download data is not yet available.
Published
2020-06-30
Section
Scientific and Technological Research Articles