Electrochemical monitoring of a photocatalytic desulfurization process of a model liquid fuel

  • Lina Marcela López-Lozano Fundación Universidad de América, Bogotá D.C., Colombia
  • Cesar Augusto Quiñones-Segura Fundación Universidad de América, Bogotá D.C., Colombia
  • Oscar Rodríguez-Bejarano Universidad Nacional de Colombia, Bogotá ,Colombia
Keywords: Photocatalysis, Thiophene, Decontamination, Differential Pulse Voltammetry, Ag-Modified TiO2

Abstract

Thiophene is a sulfur compound found mostly in gasoline and contributor to air pollution. This paper analyzes UV light photocatalytic desulfurization of model oil using Ag/TiO2. Thiophene concentration in the oil phase was determined by the electrochemical analyzer using Differential Pulse Voltammetry (DPV).

The electrochemical experimental works were performed by two methodologies. First, aliquots of the oleic mixture were taken every 30 minutes and the thiophene concentration was measured over 7 hours of degradation. The concentration of thiophene decreased by 37.94%. In the second methodology, the in situ thiophene concentration was determined by DPV, where the reaction mixture was altered by the addition of acetonitrile and a quaternary ammonium salt as solvent-supporting electrolyte system. In this medium, the thiophene concentration was reduced by 43.88% after 4 hours of photocatalytic degradation.

References

[1] Fadhil, M. (2015). Desulfurization of gas oil using a solar photocatalytic microreactor. Energy Procedia, 74, 663-678, doi: 10.1016/j.egypro.2015.07.802

[2] Lin, F., Jiang, Z., Tang, N., Zhang, C., Chen, Z., Liu, T. and Dong, B. (2016). Photocatalytic oxidation of thiophene on RuO2/SO42--TiO: Insights for cocatalyst and solid-acid. Applied Catalysis B: Environmental, 188, 253–258, doi: 10.1016/j.apcatb.2016.02.016

[3] Zeng, X., Xiao, X., Li, Y., Chen, J. and Wang, H. (2017). Deep desulfurization of liquid fuels with molecular oxygen through grapheme photocatalytic oxidation. Applied Catalysis B: Environmental, 209, 98–109, doi: 10.1016/j.apcatb.2017.02.077

[4] Abdelaal, M. Y. and Mohamed, R. M. (2014). Environmental remediation from thiophene solution by photocatalytic oxidation using a Pd/ZrO2–chitosan nanocomposite. Ceramics International, 40(6), 7693–7699, doi: 10.1016/j.ceramint.2013.12.110

[5] Lu, X., Li, X., Qian, J., Miao, N., Yao, C. & Chen, Z. (2016). Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. Journal of Alloys and Compounds, 661, 363-371, doi: 10.1016/j.jallcom.2015.11.148

[6] Bao, J., Dai, Y., Liu, H. and Yang, L. (2016). Photocatalytic removal of SO2 over Mn doped titanium dioxide supported by multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 41(35), 15688-15695, doi: 10.1016/j.ijhydene.2016.03.174

[7] Mandizadeh, S., Salavati, S. and Sadri, M. (2017). Hydrothermal synthesis, characterization and magnetic properties of BaFe2O4 nanostructure as a photocatalytic oxidative desulfurization of dibenzothiophene. Separation and Purification Technology, 175, 399-405, doi: 10.1016/j.seppur.2016.11.071

[8] Dedual, G., MacDonald, M., Alshareef, A., Tsang, D., Yip, A. and Wu, Z. (2014). Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. Journal of Environmental Chemical Engineering, 2(4), 1947–1955, doi: 10.1016/j.jece.2014.08.012

[9] Li, X., Li, F., Lu, X., Zuo, S., Yao, C. and Ni, C. (2017). Development of Bi2W1−xMoxO6/Montmorillonite nanocomposite as efficient catalyst for photocatalytic desulfurization. Journal of Alloys and Compounds, 709, 285–292, doi: 10.1016/j.jallcom.2017.03.167

[10] Gao, X. M., Fu, F., Zhang, L. P. and Li, W. H. (2013). The preparation of Ag–BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene. Physica B: Condensed Matter, 419, 80-85, doi: 10.1016/j.physb.2013.03.024

[11] Wang, C,. Zhu, W., Xu, Y., Xu, H., Zhang, M., Chao, Y., Yin, S., Li, H. and Wang, J. (2014). Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramics International, 40(8), 11627-11635, doi: 10.1016/j.ceramint.2014.03.156

[12] Sun, B., Yu, X., Wang, L., Feng, L. J., and Li, C.H. (2016). Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite. Journal of Fuel Chemistry and Technology, 44(9), 1074-1081, doi: 10.1016/S1872-5813(16)30049-4

[13] Wang, L.,Wang, W., Mominou, N., Liu, L. & Li, S. (2016). Ultra-deep desulfurization of gasoline through aqueous phase in-situ hydrogenation and photocatalytic oxidation. Applied Catalysis B: Environmental, 193, 180-188, doi: 10.1016/j.apcatb.2016.04.032

[14] Li, S. W., Li, Y. Y., Yang, F., Liu, Z., Gao, R. M. and Zhao, J. S. (2015). Photocatalytic oxidation desulfurization of model diesel over phthalocyanine/La0.8Ce0.2NiO3. Journal of Colloid and Interface Science, 460, 8-17, doi: 10.1016/j.jcis.2015.08.030

[15] Baeissa, E. (2014). Environmental remediation of thiophene solution by photocatalytic oxidation using NiO/AgInS2 nanoparticles. Journal of Industrialand Engineering Chemistry, 20(5), 3270–3275, doi: 10.1016/j.jiec.2013.12.008

[16] Wang, L., Cai, H., Li, S. and Mominou, N. (2013). Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating. Fuel, 105, 752–756, doi: 10.1016/j.fuel.2012.09.069

[17] Piech, R., Bas´, B., Kubiak, W. W. and Paczosa-Bator, B. (2012). Fast cathodic stripping voltammetric determination of elemental sulphur in petroleum fuels using renewable mercury film silver based electrode. Fuel, 97, 876-878, doi: 10.1016/j.fuel.2012.01.079

[18] Serafim, D. M. and Stradiotto, N. R. (2008). Determination of sulfur compounds in gasoline using mercury film electrode by square wave voltammetry. Fuel, 87(7), 1007-1013, doi: 10.1016/j.fuel.2007.07.012

[19] Silveiraa, G. D., Carvalhoab, L. M., Montoyac, N. and Carbó, A. D. (2017). Solid state electrochemical behavior of organosulfur compounds. Journal of Electroanalytical Chemistry, doi: 10.1016/j.jelechem.2017.10.055

[20] Blanchard P., Cravino A., and Levillain E. (2009). Electrochemistry of oligothiophenes and Polythiophenes. En Perepichka I.F. and D.F. Perepichka, Eds., Handbook of thiophene-based materials: Applications in Organic Electronics. Chichester: John Wiley.

[21] Sun, X. and Tatarchuk, B. (2016). Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2. Fuel, 183, 550–556, doi: 10.1016/j.fuel.2016.06.072

[22] Vallejo, W., Uribe, C., Navarro, k., Valle, R., Arboleda, J. and Romero, E. (2016). Estudio de la actividad antimicrobiana de películas delgadas de dióxido de titanio modificado con plata. Revista académica Colombiana de ciencias, 40(154), 69-74, doi: 10.18257/raccefyn.289

[23] Domingos da S., G., Machado de C., L, Montoya, M. and Domenech-Carbó, A. (2017). Solid state electrochemical behavior of organosulfur compounds. J. Electroanal.Chem., 806, 180-190, doi: 10.1016/j.elechem.2017.10.055

[24] Liu, S., Min, Z., Hu, D. and Liu Y. (2014). Synthesis of calcium doped TiO2 nanomaterials and their visible light degradation property, doi: 10.2991/icmaee-14.2014.12

[25] Corma, A. and García, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions: From Homogeneous to Heterogeneous Systems. Chem. Rev., 102, 3837-3892, doi: 10.1021/cr010333u

[26] Robertson, J., and Bandosz, T.J. (2006). Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst. J. Colloid Interface Sci. 299, 125-135, doi: 10.1016/j.jcis.2006.02.011

[27] Zhao, D., Li, F., Zhou, E. and Sun, Z. (2008). Kinetics and Mechanism of the Photo-oxidation of Thiophene by O2 Adsorbed on Molecular Sieves. Chem. Res. Chinese Universities, 24, 96-100, doi: 10.1016/S1005-9040(08)60020-3

[28] Mohamed, R. M. and Aazam, E. S. (2014). Preparation and characterization of core–shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene. Applied Catalysis A: General, 480, 100-107, doi: 10.1016/j.apcata.2014.04.039

[29] Mostafavi, S. M., Rouhollahi, A., Adibi, M., Mohajeri, A., Pashaee, F. and Piryaei, M. (2011). Electrochemical Investigation of Thiophene on Glassy Carbon Electrode and Quantitative Determination of it in Simulated Oil Solution by Differential Pulse Voltammetry and Amperometry Techniques. Asian Journal of Chemistry, 23(12), 5356-5360, doi: N.A

[30] Anber M., Milde, B., Alhalasah, W., Lang, H. and Holze, R. (2008). Electrochemical and DFT-studies of substituted thiophenes. Electrochimica Acta, 53(20), 6038–6047, doi: 10.1016/j.electacta.2008.02.042

[31] Çelik, B., Çelik, I., Dolas, H., Görçay, H., Sahin, Y., Saraç, A. S. and Pekmez, K. (2014). Electrochemical synthesis, characterization and capacitive properties of novelthiophene based conjugated polymer. Reactive & Functional Polymers, 83, 107–112, doi: 10.1016/j.reactfunctpolym.2014.07.014
How to Cite
López-Lozano, L. M., Quiñones-Segura, C. A., & Rodríguez-Bejarano, O. (2019). Electrochemical monitoring of a photocatalytic desulfurization process of a model liquid fuel. CT&F - Ciencia, Tecnología Y Futuro, 9(2), 73-78. https://doi.org/10.29047/01225383.180

Downloads

Download data is not yet available.
Published
2019-11-11
Section
Scientific and Technological Research Articles