Technical and economic evaluation Separation of the separation of light olefins (Ethylene and Propylene) by using π-complexationwith silver salts

  • Hernando-José Salgado-Gordon Ecopetrol S.A. - Gerencia Técnica, Refinería de Barrancabermeja, Colombia
  • Gleidy Valbuena-Moreno Ecopetrol S.A. - Gerencia Técnica, Refinería de Barrancabermeja, Colombia
Keywords: Chemical affinity, Silver nitrate, Hybrid processes, Sustainable technologies


Conventional processes for separation of ethylene and propylene until petrochemical grade are energy intensive; therefore, alternative separation processes, such as chemical affinity based technologies, are an interesting alternative for designing more sustainable processes. π-Complexation of the silver ion (Ag+) is one of these technologies. In this study, π-complexation is compared with the conventional technologies by evaluating from process and economic point of views, in order to determine whether they are feasible to be implemented at industrial scale in both grass-roots and existing units.

Based on the results, the most promissory techniques to be applied are the Bulk Fluid Liquid Membrane (BFLM) in hollow fiber modules to separate ethylene/ethane, and absorption with an AgNO3 solution to separate propylene/propane. In addition, the implementation of hybrid processes, by combining conventional and chemical affinity technologies, provides a higher saving in the production cost when applied to revamp existing units to achieve both, reducing energy consumption, or increasing processing capacity.


Al-Rabiah, A. (2003). The use of hybrid membrane distillation system for the Ethane Ethylene separation in olefin plants. 4th Ibero-American Congress on Membrane Science and Technology (CITEM). Brazil.

Azhin, M., Kaghazchi, T. & Rahmani, M. (2008). A Review on olefin/paraffin separation using reversible chemical complexation technology. J. of Ind. and Eng. Chemistry, 14 (5): 622-638.

Bessarabow, D. G., et al (1999). “Separation of 1-hexene/n-hexane mixture using a hybrid membrane/extraction system”. Sep. and Purification Tech., 16 (2), 167-174.

Bryant, D., Noble R. & Koval, C. (1997). Facilitated transport separation of benzene and cyclohexane with poly (vinyl alcohol)-AgNO3 membranes. J. of Membrane Science, 127, 161-170.

Chakraborty, M. & Bart, H. J. (2007) Highly selective and efficient transport of toluene in bulk ionic liquid membranes containing Ag+ as carrier. Fuel Processing Tech., 88, 43-49.

Chem. Eng. J. (Business & Economics) – web site.

Cleaver Brooks Boilers – web site.

Duan, S., Ito, A. & Ohkawa, A. (2002). Separation of propylene/propane mixture by a supported liquid membrane containing triethylene glycol and a silver salt. J. of Membrane Science, 215, 53-60.

Ferraz, H. C., Duarte, L. T., Di Luccio, M., Alves, T. L.,
Habert, A. C. & Borges, C. P. (2007). Recent achievements in facilitated transport membranes for separation processes. Brazilian J. of Chem. Eng., 24 (1): 101-118.

Futselaar, H., Zoontjes, R.J.C., Reith, T. & Rácz, I.G. (1993). Economic comparison of transverse and longitudinal flow hollow fiber membrane modules for reverse osmosis and ultrafiltration. Desalination, 90, 345-361.

Hamouda, S., Nguyen, Q. , Langevin, D. & Roudesli, S. (2008). Facilitated transport of ethylene in poly (Amide 12-Block tetramethylenoxide) copolymer/AgBF4 membranes containing silver (I) and copper (I) ions as carriers. J. of Applied Sciences, 8 (7):1310-1314.

ICIS (Chemical industry news and intelligence) – web site.

Kang, S. W., Hong, J., Char, K., Kim, J.H., Kim, J. & Kang J.S. (2008). Correlation between anions of ionic liquids and reduction of silver ions in facilitated olefin transport membranes. Desalination, 233, 327-332.

Kao, S., Wang F.S. & Lue S.L. (2002). Sorption, diffusion, and pervaporation of benzene/cyclohexane mixtures on silver-Nafion membranes. Desalination, 149, 35-40.

Kim, H. S., Park, S.J., Nguyen, D.Q., Bae, J.Y., Bae, H.G. & Lee, H., Leeb, S.D. & Choib D.K. (2007). Multi-functional zwitterionic compounds as new membrane materials for separating olefin paraffin mixtures. Green Chem., 9, 599-604.

Li, M., Pittman Jr., C. E. & Li, T. (2009). Extraction of polyunsaturated fatty acid methyl esters by imidazolium-based ionic liquids containing silver tetrafluoroborate – Extraction equilibrium studies. Talanta, 78, 1364-1370.

Li, M., et al (2009). Selective extraction and enrichment of polyunsaturated fatty acid methyl esters from fish oil by novel π-complexing sorbents. Sep. and Purification Tech., 66, 1-8.

Mingos, D. M. P. (2001). A historical perspective on Dewar’s landmark contribution to organometallic chemistry. J. of Organometallic Chem., 635, 1-8.

Newfoundland, J. (1998). Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends in Food Science and Tech., 9 (6): 230-240.

Nymeijer, K., Visser, T., Assen, R. & Wessling, M. (2004). Super selective membranes in gas liquid membrane contactor for olefin paraffin separation. J. of Membrane Science, 232, 107-114.

Ortiz, A., Ruiza, A., Gorria, D. & Ortiz, I. (2008). Room temperature ionic liquid with silver salts as efficient reaction media for propylene/propane separation: Absorption equilibrium. Sep. and Purification Tech., 63, 311-318.

Pinnau, I., &. Toy, L.G. (2001). Solid polymer electrolyte composite membranes for olefin paraffin separation. J. of Membrane Science, 184, 39-48.

Pure Oil Co., the. Concentration of low molecular weight aliphatic olefins from olefin-paraffin mixtures by absorption in AgNO3 solution, specially the concentration of butylenes from butylenes-butanes mixtures. Report for the Technical Oil Mission of the U.S. Bureau of Mines: Film Study Group Report on Microfilm, Reel No. 18. Chicago, USA, August 1944.

Ravanchi, M. T., Kaghazchi, T. & Kargari, A. (2008). Immobilized liquid membrane for propylene/propane separation. World Congress of Science, Engineering and Technology’2008. Paris, France, July 2008.

Ravanchi, M. T., Kaghazchi, T. & Kargari, A. (2009). Application of membrane separation processes in petrochemical industry: a review. Desalination, 235, 199-244.

Salt Lake Metals Inc. – web site.

Song, F., Yu, Y. & Cheng, J. (2008). Separation of C6 isomers in reactive extractants. Tsinghua Science and Tech., 13 (5): 730-735.

Teramoto, M., Matsuyama, H. & Yonehara, T. (1990). Selective facilitated transport of benzene across supported and flowing liquid membranes containing silver nitrate as a carrier. J. of Membrane Sci., 50, 269-284.

Teramoto, M., Shimizu, S., Matsuyama, H. & Matsumiya, N. (2005). Ethylene/ethane separation and concentration by hollow fiber facilitated transport membrane module with permeation of silver nitrate solution. Sep. and Purification Tech., 44,19-29.

Tsou, D., Blachman, M. W. & Davis, J. C. (1994). Silver Facilitated olefin paraffin separation in a liquid membrane contactor system. Ind. Eng. Res., 33, 3209-3216.

UE System Inc. – web site.

Won, J., Kim, D.B., Kang, Y.S., Choi, D.K., Kim, H.S., Kim, C. J. & Kim, C.K. (2005). An ab initio study of ionic liquid silver complexes as carriers in facilitated olefin transport membranes. J. of Membrane Sci., 260, 37-44.

Zevnik, F. & Buchanan, R. (1963). General correlation of process investment. Chem. Eng. Progress, 59 (2):70-77.
How to Cite
Salgado-Gordon, H.-J., & Valbuena-Moreno, G. (2011). Technical and economic evaluation Separation of the separation of light olefins (Ethylene and Propylene) by using π-complexationwith silver salts. CT&F - Ciencia, Tecnología Y Futuro, 4(3), 73-87.


Download data is not yet available.
Scientific and Technological Research Articles