Method to determine the weakness planes effect on the calculation of the collapse pressure of oil wells

  • Juan-David Velilla-Uribe Universidad Industrial de Santander, Bucaramanga, Colombia
  • Jorge-Luis Cáceres-Montero Universidad Industrial de Santander, Bucaramanga, Colombia
  • Publio-Alejandro Sandoval-Merchán Ecopetrol – Instituto Colombiano del Petróleo, Piedecuesta, Colombia
  • Reinel Corzo-Rueda Ecopetrol – Instituto Colombiano del Petróleo, Piedecuesta, Colombia
  • Zuly-Himelda Calderón-Carrillo Universidad Industrial de Santander, Bucaramanga, Colombia
Keywords: Anisotropy, Formation pressure, Cohesion, Angle of friction, Mechanical properties, Mechanical stress

Abstract

Given the complexity involved when modeling heterogeneous and anisotropic formations, this condition is usually ignored, supposing that the well is surrounded by a homogenous and isotropic medium. The main objective of this paper is to present a method that shows the error that might occur when the condition of homogeneity and isotropy is not satisfied, when determining collapse pressure in a formation containing planes of weakness.

Although the literature presents some studies, there is not a clear method for determining the collapse pressure of a well that takes into account the mechanical properties of the planes of weakness contained in the formation. The proposed method is based on the Mohr Coulomb criterion for homogeneous and isotropic formations and the criterion of Jaeger and Cook (1979) for laminated anisotropic media. It constitutes a robust tool that calculates the collapse pressure in highly complex configurations, contributing thus to prevent waste of time and money by more accurately considering the actual behavior of laminated formations. The method includes: the deduction of the direction cosine equation, the proposal of an objective function, the construction of a collapse pressure profile, and the sensitivity analysis of the collapse pressure with colored rosettes. A real case was selected to implement the proposed method.

References

De la Cruz, A. (1994). Estudio Sedimentológico, Diagenético y Estructural de las Formaciones Geológicas del Emirato de Abu Duari (Emiratos Árabes Unidos), Tesis de Doctorado, Universidad Complutense de Madrid, España.

Donath, F. A. (1972). Strength variation and deformational Behaivor in Anisotropic Rocks, State of stress in the Earth’s Crust, Santa Monica, Ca., 280-297 pp.

Fjaer, E., Holt, R. M., Horsrud, P., Raeen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics (Second Edition), Amsterdam: ElSevier.

Gallant, C., Zhang, J., Wolfe, C., Freeman, J., Al-BaZali, T., & Reese, M. (2007). Wellbore Stability Considerations for Drilling High-Angle Wells Through Finely Laminated Shale: A Case Study from Terra Nova, SPE 110742 presented at the 2007, SPE Annual Technical Conference and Exhibition held in Anaheim, California, U.S.A., 11-14 November 2007.

Hoek, E. (1983). 23rd Rankine lecture. Strength of jointed Rock Masses. Geotechnique, 33 (3),187-223 pp.

Jaeger, J. C., & Cook, N. G. W. (1979). Fundamental of rock Mechanics (Third edition, 361-396pp), London: Chapman and Hall.

Kirsch, G. (1898). Die theorie der elastizitat und die berdurfniesse der festigkeitslehre, Zeitschrift des Vereines Deutscher Ing., 42-797 pp.

Mantilla, H. D., & Reyes, T. J. (2009). Diseño y construcción de un dispositivo para pruebas de corte directo inclinado en muestras de roca de geometría no convencional para el laboratorio de mecánica de rocas del instituto colombiano del petróleo, Tesis de pregrado, Fac. de Ing. Físico-Mecánicas, Universidad Industrial de Santander, Bucaramanga, Colombia, 78-85.

McLamore, R. T., & Gray, K. E. (1967). A strength criterion for anisotropic rocks based upon experimental observations, SPE 1721, 96th Annual AIME Meeting, Los
Angeles, California.

Osorio, J. G. (2003). Curso de Geomecánica de Yacimientos. Instituto Colombiano del Petróleo (ICP), Bucaramanga, Colombia, 1-12.

Ramamurthy, T. (1993). Strength and modulus response of anisotropic rocks. In: Comprehensive rock engineering, (First edition, 313-329pp.), Pergamon Press: Oxford.

Velilla, J. D., & Cáceres, J. L. (2010). Análisis de los Efectos que Producen la Desviación de Pozo y el Buzamiento de las Capas en la Ventana de Lodo, (Aplicación en un Campo Colombiano), Tesis de pregrado, Fac. de Ing. Físico-Química, Universidad Industrial de Santander, Bucaramanga, Colombia, 220-231.

Willson S. M., Zoback, M. D., & Moos, D.(1999).Drilling in South America: A Wellbore Stability Approach for Complex GeologicConditions, SPE 53940, Latin American
and Caribbean Petrol. Eng. Conference, 21-23 April 1999, Caracas, Venezuela.

Willson, S. M., Edwards, S. T., Crook, A., Bere, A., Moos, D., Peska, P., & Last, N. (2007). Assuring Stability in Extended-Reach Wells- Analyses, Practices, and Mitigations, SPE/IADC 105405 prepared to present at the 2007 SPE/IADC Drilling conference held in Amsterdam, The Netherlands, 20-22 February 2007.

Walsh, J. B., & Brace, W. F. (1964). Afracture criterion for brittle anisotropic rocks. J. Geophy. Res., 69: 3449-3456 pp.

Zhang, J. (2005). The impact of shale properties on wellbore stability, Ph. D. Thesis (3, 31-66), University of Texas, Austin, United States.
How to Cite
Velilla-Uribe, J.-D., Cáceres-Montero, J.-L., Sandoval-Merchán , P.-A., Corzo-Rueda, R., & Calderón-Carrillo, Z.-H. (2020). Method to determine the weakness planes effect on the calculation of the collapse pressure of oil wells. CT&F - Ciencia, Tecnología Y Futuro, 4(2), 43-56. Retrieved from https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/244

Downloads

Download data is not yet available.
Published
2020-04-15
Section
Scientific and Technological Research Articles