Evaluation of performance and early degradation of a 180.8 KWP rooftop on a grid-connected photovoltaic system in a Colombian tropical region environment

Keywords: PV systems performance, PV system early degradation degradación temprana del sistema fotovoltaico, Rendimiento de sistemas fotovoltaicos


The use of renewable energy such as photovoltaic is growing. According to IRENA, these systems are one of the most dynamic generation technologies. The global photovoltaic market has grown rapidly between 2000 and 2016 at an annual average compound rate of 44%, from 0.8 GW to 291 GW. In Colombia, regions with high solar irradiation levels have been identified as emerging markets. The Government's plan is to increase the share of non-conventional energies in the energy matrix from 2% to 8% - 10%. However, the uncertainties associated with technology and sites specific degradation rates make it difficult to calculate accurate electricity generation efficiencies and predicting future performance and material degradation rates, and thus business models exhibit considerable deviations related to the real electricity generation rates. This work studies the performance and early degradation of a 180.8 kWp rooftop on grid connected photovoltaic system, installed in Barranquilla, Colombia. Two methods were used: i) estimation of solar conversion efficiency, and ii) visual inspection. The first method includes a cross analysis of climatic conditions, irradiance levels, and the generated energy downstream the inverters. The second method consists of periodical visual inspections of installed modules to check: discoloration, delamination, busbar corrosion, cracking of solar cell, glass breakage, anti-reflection coating, and solder bond.

Author Biography

Cinthia Audivet, PROMIGAS S.A. E.S.P., Barranquilla, Colombia

SCOPUS ID: 57194500234


Planas Martí, M. A. & Cárdenas, J. C. (2019). La matriz energética de Colombia se renueva. Energía para el Futuro. Retrieved from: https://blogs.iadb.org/energia/es/la-matriz-energetica-de-colombia-se-renueva/

Sukhatme, S. P. & Nayak, J. K. (2017). Solar energy. McGraw-Hill Education.

Quansah, D. A. & Adaramola, M. S. (2018). Ageing and degradation in solar photovoltaic modules installed in northern Ghana. Solar Energy, 173, 834-847. https://doi.org/10.1016/j.solener.2018.08.021

Mussard, M. & Amara, M. (2018). Performance of solar photovoltaic modules under arid climatic conditions: A review. Solar Energy, 174, 409-421. https://doi.org/10.1016/j.solener.2018.08.071

Quansah, D. A., & Adaramola, M. S. (2019). Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression. Renewable Energy, 131, 900-910. https://doi.org/10.1016/j.renene.2018.07.117

Silvestre, S., Tahri, A., Tahri, F., Benlebna, S. & Chouder, A. (2018). Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment. Energy, 152, 57-63, https://doi.org/10.1016/j.energy.2018.03.135

Jordan, D. C. & Kurtz, S. R. (2013). Photovoltaic degradation rates—an analytical review. Progress in photovoltaics: Research and Applications, 21(1), 12-29. https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.1182

Pan, R., Kuitche, J. & Tamizhmani, G. (2011, January). Degradation analysis of solar photovoltaic modules: Influence of environmental factor. In 2011 Proceedings-Annual Reliability and Maintainability Symposium (pp. 1-5). IEEE. https://doi.org/10.1109/RAMS.2011.5754514

Limmanee, A., Songtrai, S., Udomdachanut, N., Kaewniyompanit, S., Sato, Y., Nakaishi, M., … & Sakamoto, Y. (2017). Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE. Renewable energy, 102, 199-204. https://doi.org/10.1016/j.renene.2016.10.052

Limmanee, A., Udomdachanut, N., Songtrai, S., Kaewniyompanit, S., Sato, Y., Nakaishi, M., ... & Sakamoto, Y. (2016). Field performance and degradation rates of different types of photovoltaic modules: A case study in Thailand. Renewable Energy, 89, 12-17. https://doi.org/10.1016/j.renene.2015.11.088

Guo, B., Javed, W., Figgis, B. W. & Mirza, T. (2015, March). Effect of dust and weather conditions on photovoltaic performance in Doha, Qatar. In 2015 First Workshop on Smart Grid and Renewable Energy (SGRE) (pp. 1-6). IEEE. https://doi.org/10.1109/SGRE.2015.7208718

Huang, C. & Wang, L. (2018). Simulation study on the degradation process of photovoltaic modules. Energy conversion and management, 165, 236-243. https://doi.org/10.1016/j.enconman.2018.03.056

Katayama, N., Osawa, S., Matsumoto, S., Nakano, T. & Sugiyama, M. (2019). Degradation and fault diagnosis of photovoltaic cells using impedance spectroscopy. Solar Energy Materials and Solar Cells, 194, 130-136. https://doi.org/10.1016/j.solmat.2019.01.040

Han, C., & Lee, H. (2019). A field-applicable health monitoring method for photovoltaic system. Reliability Engineering & System Safety, 184, 219-227. https://doi.org/10.1016/j.ress.2018.01.002

Omazic, A., Oreski, G., Halwachs, M., Eder, G. C., Hirschl, C., Neumaier, L., ... & Erceg, M. (2019). Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar energy materials and solar cells, 192, 123-133. https://doi.org/10.1016/j.solmat.2018.12.027

Park, N. C., Jeong, J. S., Kang, B. J. & Kim, D. H. (2013). The effect of encapsulant discoloration and delamination on the electrical characteristics of photovoltaic module. Microelectronics Reliability, 53(9-11), 1818-1822. https://doi.org/10.1016/j.microrel.2013.07.062

de Oliveira, M. C. C., Cardoso, A. S. A. D., Viana, M. M. & Lins, V. D. F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews. 81, 2299-2317, https://doi.org/10.1016/j.rser.2017.06.039

Bouraiou, A., Hamouda, M., Chaker, A., Lachtar, S., Neçaibia, A., Boutasseta, N., & Mostefaoui, M. (2017). Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment. Energy, 132, 22-30. https://doi.org/10.1016/j.energy.2017.05.056

Mellit, A., Tina, G. M., & Kalogirou, S. A. (2018). Fault detection and diagnosis methods for photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 91, 1-17. https://doi.org/10.1016/j.rser.2018.03.062

Fouad, M. M., Shihata, L. A. & Morgan, E. I. (2017). An integrated review of factors influencing the performance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511. https://doi.org/10.1016/j.rser.2017.05.141

Ndiaye, A., Charki, A., Kobi, A., Kébé, C. M., Ndiaye, P. A. & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140-151. https://doi.org/10.1016/j.solener.2013.07.005

Zhang, S., Zhang, T., He, Y., Liu, D., Wang, J., Du, X., & Ma, B. (2019). Long-term atmospheric corrosion of aluminum alloy 2024-T4 in coastal environment: Surface and sectional corrosion behavior. Journal of Alloys and Compounds, 789, 460-471. https://doi.org/10.1016/j.jallcom.2019.03.028

National Association of Corrosion Engineers International. (2002). Control of external corrosion on underground or submerged metallic piping systems (NACE RP0169)

McCafferty, E. (2010). Thermodynamics of corrosion: Pourbaix diagrams. In Introduction to Corrosion Science (pp. 95-117). Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0455-3_6

Wang, Z., Li, Y., Wang, K., & Huang, Z. (2017). Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis. Renewable and Sustainable Energy Reviews, 76, 1153-1162. https://doi.org/10.1016/j.rser.2017.03.119

International Organization for Standardization (1992). Corrosion of Metals and Alloys - Corrosivity of Atmospheres - Classification, Determination, and Estimation (ISO 9223).

Dan, Z., Takigawa, S., Muto, I., & Hara, N. (2011). Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminum alloys. Corrosion Science, 53(5), 2006-2014. https://doi.org/10.1016/j.corsci.2011.02.027

Tao, L., Song, S., Zhang, X., Zhang, Z., & Lu, F. (2008). Image analysis of atmospheric corrosion of field exposure high strength aluminum alloys. Applied Surface Science, 254(21), 6870-6874. https://doi.org/10.1016/j.apsusc.2008.04.088

How to Cite
Audivet, C., Romero, E., García, J. ., Fonseca, A., Pinzón, H., Bula, A. ., & Sanjuan, M. (2021). Evaluation of performance and early degradation of a 180.8 KWP rooftop on a grid-connected photovoltaic system in a Colombian tropical region environment . CT&F - Ciencia, Tecnología Y Futuro, 11(1), 11–20. https://doi.org/10.29047/01225383.254


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo