Assessment of reducing sugars production from agro-industrial wastes by batch and semicontinuous subcritical water hydrolysis

  • Victor Fernando Marulanda Cardona Universidad de La Salle, Bogotá - Colombia http://orcid.org/0000-0001-8038-2536
  • Itzayana Gonzalez Avila Instituto de Pesquisas Hidráulicas IPH. Universidade Federal de Rio Grande do Sul, UFRGS, Porto Alegre, Brasil. https://orcid.org/0000-0003-1684-8885
  • Alexandra Lopez Vanegas Universidad de La Salle, Bogotá, Colombia
  • Juan Rodríguez Buitrago Universidad de La Salle, Bogotá, Colombia
Keywords: agro-industrial wastes, total reducing sugars, subcritical hydrolysis, pea pot, corn stover

Abstract

Reducing sugars produced from agro-industrial wastes by means of hydrolysis represent a promising alternative of chemicals and energy. Yet, large scale production still struggles with several factors involving process complexity, sugars degradation, corrosion, enzyme recyclability, and economic feasibility. More recently, sub and supercritical water hydrolysis has been reported for the production of reducing sugars as a readily available alternative to acid and enzymatic biomass hydrolysis. Accordingly, in this work, the results of batch and semicontinuous lab scale subcritical water hydrolysis experiments of agro-industrial wastes of pea pot and corn stover are discussed. Experiments were carried in the temperature range 250 to 300 °C, pressures up to 3650 psi, residence times up to 30 minutes in batch mode operation, or water flowrates up to 12 mL/min in semicontinuous mode operation. Produced sugars were assessed in the effluent of each experimental run by means of dinitrosalicilic acid method (DNS). A maximum total reducing sugar (TRS) yield of 21.8% was measured for batch pea pot subcritical water hydrolysis experiments at 300°C, 15 minutes, 3650 psi, and 1:6 biomass to water mass ratio. Semicontinuous subcritical water hydrolysis of corn stover showed a maximum TRS accumulated yield of 19% at 290 °C, 1500 psi, and water flowrate of 9 mL/min. The results showed the feasibility of producing reducing sugars from agro-industrial wastes currently discarded through subcritical hydrolysis.

References

Torres-mayanga, P. C., Lachos-perez, D., Mudhoo, A., Kumar, S., Brown, A. B., Tyufekchiev, M., Dragone, G., Mussatto, S. I., Rostagno, M. A., Timko, M., & Forster-carneiro, T. (2019). Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass : A review. Biomass and Bioenergy, 130(September), 105397. https://doi.org/10.1016/j.biombioe.2019.105397

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033

Zhao, Y., Damgaard, A., Xu, Y., Liu, S., & Christensen, T. H. (2019). Bioethanol from corn stover – Global warming footprint of alternative biotechnologies. Applied Energy, 247, 237–253. https://doi.org/10.1016/j.apenergy.2019.04.037

Nimbalkar, P. R., Khedkar, M. a., Chavan, P. V., & Bankar, S. B. (2018). Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation. Renewable Energy, 117, 520–529. https://doi.org/10.1016/j.renene.2017.10.079

King, J. W., Srinivas, K., Guevara, O., Lu, Y. W., Zhang, D., & Wang, Y. J. (2012). Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. Journal of Supercritical Fluids, 66, 221–231. https://doi.org/10.1016/j.supflu.2012.02.010

Prado, J. M., Lachos-Perez, D., Forster-Carneiro, T., & Rostagno, M. A. (2016). Sub- A nd supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food and Bioproducts Processing, 98, 95–123. https://doi.org/10.1016/j.fbp.2015.11.004

Marulanda-Buitrago, P. A., & Marulanda-Cardona, V. F. (2017). Production of reducing sugars from lignocellulosic Kikuyu grass residues by hydrolysis using subcritical water in batch and semibatch reactors. CTyF - Ciencia, Tecnologia y Futuro, 7(1), 137–146. https://doi.org/10.29047/01225383.70

Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., & Pazo-Cepeda, M. V. (2018). Understanding biomass fractionation in subcritical & supercritical water. Journal of Supercritical Fluids, 133, 550–565. https://doi.org/10.1016/j.supflu.2017.08.012

Prado, J. M., Vardanega, R., Nogueira, G. C., Forster, T., Rostagno, M. A., Filho, F. M., & Meireles, M. A. A. A. (2017). Valorization of residual biomasses from agri-food industry by subcritical water hydrolisis assisted by CO2. Energy Fuels, 31(3), 2838–2846. https://doi.org/10.1021/acs.energyfuels.6b02670

Prado, J. M., Follegatti-Romero, L. A., Forster-Carneiro, T., Rostagno, M. A., Maugeri Filho, F., & Meireles, M. A. A. (2014). Hydrolysis of sugarcane bagasse in subcritical water. Journal of Supercritical Fluids, 86, 15–22. https://doi.org/10.1016/j.supflu.2013.11.018

Sasaki, M., Adschiri, T., & Arai, K. (2003). Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology, 86(3), 301–304. https://doi.org/10.1016/S0960-8524(02)00173-6

Schacht, C., Zetzl, C., & Brunner, G. (2008). From plant materials to ethanol by means of supercritical fluid technology. Journal of Supercritical Fluids, 46, 299–321. https://doi.org/10.1016/j.supflu.2008.01.018

Kumar, S., Kothari, U., Kong, L., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 35(2), 956–968. https://doi.org/10.1016/j.biombioe.2010.11.023

Cardona, E. M., Rios, L. a., & Peña, J. D. (2012). Disponibilidad de variedades de pastos y forrajes como potenciales materiales lignocelulósicos para la producción de bioetanol en Colombia. Informacion Tecnologica, 23, 87–96. https://doi.org/10.4067/S0718-07642012000600010

Nimbalkar, P. R., Khedkar, M. a., Chavan, P. V., & Bankar, S. B. (2018). Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation. Renewable Energy, 117, 520–529. https://doi.org/10.1016/j.renene.2017.10.079

Sunphorka, S., Chavasiri, W., Oshima, Y., & Ngamprasertsith, S. (2012). Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: Optimization by response surface methodology. International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.2262

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

Montgomery, D. (2012). Design and Analysis of Experiments Eighth Edition. https://doi.org/10.1198/tech.2006.s372

Maravić, N., Šereš, Z., Vidović, S., Mišan, A., Milovanović, I., Radosavljević, R., & Pavlić, B. (2018). Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops and Products, 115(September 2017), 32–39. https://doi.org/10.1016/j.indcrop.2018.02.014

Liu, C., & Wyman, C. E. (2005). Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 96(18 SPEC. ISS.), 1978–1985. https://doi.org/10.1016/j.biortech.2005.01.012

Abaide, E. R., Mortari, S. R., Ugalde, G., Valério, A., Amorim, S. M., Di Luccio, M., Moreira, R. de F. P. M., Kuhn, R. C., Priamo, W. L., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 209, 386–397. https://doi.org/10.1016/j.jclepro.2018.10.259

Santos, M. S. N. do., Zabot, G. L., Mazutti, M. A., Ugalde, G. A., Rezzadori, K., & Tres, M. V. (2020). Optimization of subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous mode. Bioresource Technology, 306(March), 123129. https://doi.org/10.1016/j.biortech.2020.123129

How to Cite
Marulanda Cardona, V. F., Gonzalez Avila, I., Lopez Vanegas, A., & Rodríguez Buitrago, J. . (2021). Assessment of reducing sugars production from agro-industrial wastes by batch and semicontinuous subcritical water hydrolysis . CT&F - Ciencia, Tecnología Y Futuro, 11(1), 55–63. https://doi.org/10.29047/01225383.267

Downloads

Download data is not yet available.
Published
2021-06-30
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code