Assessment of reducing sugars production from agro-industrial wastes by batch and semicontinuous subcritical water hydrolysis

  • Victor Fernando Marulanda Cardona Universidad de La Salle, Bogotá - Colombia
  • Itzayana Gonzalez Avila Instituto de Pesquisas Hidráulicas IPH. Universidade Federal de Rio Grande do Sul, UFRGS, Porto Alegre, Brasil.
  • Alexandra Lopez Vanegas Universidad de La Salle, Bogotá, Colombia
  • Juan Rodríguez Buitrago Universidad de La Salle, Bogotá, Colombia
Keywords: agro-industrial wastes, total reducing sugars, subcritical hydrolysis, pea pot, corn stover azucares reductores totales, desecho agroindustrial, hidrólisis en agua subcrítica, cáscara de arveja, follaje de maíz


Reducing sugars produced from agro-industrial wastes by means of hydrolysis represent a promising alternative of chemicals and energy. Yet, large scale production still struggles with several factors involving process complexity, sugars degradation, corrosion, enzyme recyclability, and economic feasibility. More recently, sub and supercritical water hydrolysis has been reported for the production of reducing sugars as a readily available alternative to acid and enzymatic biomass hydrolysis. Accordingly, in this work, the results of batch and semicontinuous lab scale subcritical water hydrolysis experiments of agro-industrial wastes of pea pot and corn stover are discussed. Experiments were carried in the temperature range 250 to 300 °C, pressures up to 3650 psi, residence times up to 30 minutes in batch mode operation, or water flowrates up to 12 mL/min in semicontinuous mode operation. Produced sugars were assessed in the effluent of each experimental run by means of dinitrosalicilic acid method (DNS). A maximum total reducing sugar (TRS) yield of 21.8% was measured for batch pea pot subcritical water hydrolysis experiments at 300°C, 15 minutes, 3650 psi, and 1:6 biomass to water mass ratio. Semicontinuous subcritical water hydrolysis of corn stover showed a maximum TRS accumulated yield of 19% at 290 °C, 1500 psi, and water flowrate of 9 mL/min. The results showed the feasibility of producing reducing sugars from agro-industrial wastes currently discarded through subcritical hydrolysis.


Torres-mayanga, P. C., Lachos-perez, D., Mudhoo, A., Kumar, S., Brown, A. B., Tyufekchiev, M., Dragone, G., Mussatto, S. I., Rostagno, M. A., Timko, M., & Forster-carneiro, T. (2019). Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass : A review. Biomass and Bioenergy, 130(September), 105397.

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.

Zhao, Y., Damgaard, A., Xu, Y., Liu, S., & Christensen, T. H. (2019). Bioethanol from corn stover – Global warming footprint of alternative biotechnologies. Applied Energy, 247, 237–253.

Nimbalkar, P. R., Khedkar, M. a., Chavan, P. V., & Bankar, S. B. (2018). Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation. Renewable Energy, 117, 520–529.

King, J. W., Srinivas, K., Guevara, O., Lu, Y. W., Zhang, D., & Wang, Y. J. (2012). Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. Journal of Supercritical Fluids, 66, 221–231.

Prado, J. M., Lachos-Perez, D., Forster-Carneiro, T., & Rostagno, M. A. (2016). Sub- A nd supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food and Bioproducts Processing, 98, 95–123.

Marulanda-Buitrago, P. A., & Marulanda-Cardona, V. F. (2017). Production of reducing sugars from lignocellulosic Kikuyu grass residues by hydrolysis using subcritical water in batch and semibatch reactors. CTyF - Ciencia, Tecnologia y Futuro, 7(1), 137–146.

Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., & Pazo-Cepeda, M. V. (2018). Understanding biomass fractionation in subcritical & supercritical water. Journal of Supercritical Fluids, 133, 550–565.

Prado, J. M., Vardanega, R., Nogueira, G. C., Forster, T., Rostagno, M. A., Filho, F. M., & Meireles, M. A. A. A. (2017). Valorization of residual biomasses from agri-food industry by subcritical water hydrolisis assisted by CO2. Energy Fuels, 31(3), 2838–2846.

Prado, J. M., Follegatti-Romero, L. A., Forster-Carneiro, T., Rostagno, M. A., Maugeri Filho, F., & Meireles, M. A. A. (2014). Hydrolysis of sugarcane bagasse in subcritical water. Journal of Supercritical Fluids, 86, 15–22.

Sasaki, M., Adschiri, T., & Arai, K. (2003). Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology, 86(3), 301–304.

Schacht, C., Zetzl, C., & Brunner, G. (2008). From plant materials to ethanol by means of supercritical fluid technology. Journal of Supercritical Fluids, 46, 299–321.

Kumar, S., Kothari, U., Kong, L., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 35(2), 956–968.

Cardona, E. M., Rios, L. a., & Peña, J. D. (2012). Disponibilidad de variedades de pastos y forrajes como potenciales materiales lignocelulósicos para la producción de bioetanol en Colombia. Informacion Tecnologica, 23, 87–96.

Nimbalkar, P. R., Khedkar, M. a., Chavan, P. V., & Bankar, S. B. (2018). Biobutanol production using pea pod waste as substrate: Impact of drying on saccharification and fermentation. Renewable Energy, 117, 520–529.

Sunphorka, S., Chavasiri, W., Oshima, Y., & Ngamprasertsith, S. (2012). Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: Optimization by response surface methodology. International Journal of Food Engineering, 8(3).

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428.

Montgomery, D. (2012). Design and Analysis of Experiments Eighth Edition.

Maravić, N., Šereš, Z., Vidović, S., Mišan, A., Milovanović, I., Radosavljević, R., & Pavlić, B. (2018). Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops and Products, 115(September 2017), 32–39.

Liu, C., & Wyman, C. E. (2005). Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 96(18 SPEC. ISS.), 1978–1985.

Abaide, E. R., Mortari, S. R., Ugalde, G., Valério, A., Amorim, S. M., Di Luccio, M., Moreira, R. de F. P. M., Kuhn, R. C., Priamo, W. L., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 209, 386–397.

Santos, M. S. N. do., Zabot, G. L., Mazutti, M. A., Ugalde, G. A., Rezzadori, K., & Tres, M. V. (2020). Optimization of subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous mode. Bioresource Technology, 306(March), 123129.

How to Cite
Marulanda Cardona, V. F., Gonzalez Avila, I., Lopez Vanegas, A., & Rodríguez Buitrago, J. . (2021). Assessment of reducing sugars production from agro-industrial wastes by batch and semicontinuous subcritical water hydrolysis . CT&F - Ciencia, Tecnología Y Futuro, 11(1), 55–63.


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo