Basement Characteristics In The Lower Magdalena Valley and The Sinú And San Jacinto fold belts: evidence of a Late Cretaceous Magmatic Arc at the South of The Colombian Caribbean

  • Alejandro Silva-Arias Ecopetrol S.A.
  • Liliana-Andrea Páez-Acuña Universidad Industrial de Santander
  • Daniel Rincón-Martínez Ecopetrol S.A.
  • Javier-Alfonso Tamara-Guevara Royal Holloway. University of London, England.
  • Pedro-David Gomez-Gutiérrez Ecopetrol S.A.
  • Eduardo López-Ramos Ecopetrol S.A.
  • Sandra-Milena Restrepo-Acevedo Ecopetrol S.A.
  • Luis-Carlos Mantilla-Figueroa Universidad Industrial de Santander
  • Victor Valencia Washington State University, School of Earth and Enviromental Sciences
Keywords: Magmatic Arc, U-Pb geochronology, subduction, Caribbean, South America.


The onset of subduction in the Caribbean Plate under the South American Plate allowed the development of an Active Continental Margin; the age of onset, the mechanism, and the plates involved are a discussion topic, especially at the Colombian South Caribbean Margin, due to the lack of geological information related to the basement. This article in tegrates petrographic, geochemical analyses and U/Pb dating of basement samples, in addition to the inclusion of published magnetic anomalies maps from the North of Colombia, in order to generate a compositional distribution map of the basement and determine the presence of a magmatic arc under the sediments of the Lower Magdalena Valley (LMV), which supports the existence of a Late Cretaceous active continental margin represented by a magmatic arc, called Magmatic Arc of Magangué. Dating of the arc yield a Late Cretaceous Age (84-74 Myr), and petrographic and geochemical evidence suggests it is comprised of igneous bodies of felsic to intermediate composition, which intrudes the LMV continental crust originated in a subduction setting. The origin of the LMV continental crust seems to be related to the continent-continent collision (consolidation of Pangaea) during the Permian (300 Ma ago), and to the post-Alleganian extension event of Triassic age (232 Ma ago).


Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173-174.

Cox, K., Bell, J., & Pankhurst, R. (1979). The interpretation ofigneous rocks. London: George, Allen and Unwin, 450p.

Davies, J.F., & Whitehead, R.E. (2006). Alkali-alumina and MgO-alumina molar ratios of altered and unaltered rhyolites. Explor. Mining Geol., 15, 75-88.DOI:10.2113/gsemg.15.1-2.75.

Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks discrimination diagram. J. Petrol., 48, 2341- 2357. DOI:

Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 8, 523-548. DOI: 10.1139/e71-055.

Maniar, P.D., & Piccoli, P.M. (1989). Tectonic discriminations of granitoid. GSA Bulletin, 101, 635-643.

Pearce, J.A., Harris, N. B. W., & Tindle, A.J. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25 (4), 956-83.

Sun, S. -S., & McDonough. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London. Sp. Public. DOI: 10.1144/ GSL.SP.1989.042.01.19.

Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem.
Geol., 20, 325-343. DOI:
How to Cite
Silva-Arias, A., Páez-Acuña, L.-A. ., Rincón-Martínez, D., Tamara-Guevara, J.-A., Gomez-Gutiérrez, P.-D., López-Ramos, E., … Valencia, V. (2016). Basement Characteristics In The Lower Magdalena Valley and The Sinú And San Jacinto fold belts: evidence of a Late Cretaceous Magmatic Arc at the South of The Colombian Caribbean. CT&F - Ciencia, Tecnología Y Futuro, 6(4), 5–36.


Download data is not yet available.
Scientific and Technological Research Articles


QR Code