Rigorous analytical solution of the basic concentration model for an injected fluid in a pipe

  • Edgardo Jonathan Suárez Universidad Nacional Autónoma de México
  • Alejandro Rodríguez Instituto de Ingeniería Universidad Autónoma de Tamaulipas
  • Ángel Enrique Chávez Facultad de Química. Universidad Nacional Autónoma de México (UNAM)
  • Elena Izquierdo Universidad de la Habana
  • Arturo Palacio Universidad Nacional Autónoma de México
Keywords: Concentration profile, Homogeneous blend mix, dimensionless model

Abstract

In the oil industry chemical products are often injected during fluid transport either to modify the rheological characteristics, i.e. viscosity, or to stabilize crude oil composition by inhibition of phase separation. The effects are generally related to the dosed product concentration so it is important to study the transient variation in the amount of fluid incorporated to a stream mainly for cases where there is no mechanical premixing of phases when the main flow is in the laminar regime. This paper presents a theoretical model based on the conservation equations of mass and momentum that prescribes the temporal evolution of the spatial concentration profiles under different conditions. An analytical solution to the model is proposed that shows how the behavior is dependent on the injection method. The theoretical results can be considered as a basis to predict how the injection method affects these profiles.

References

Abdulbari, H. A. Shabirin, A., & Abdurrahman, H. N. (2014). Bio-polymers for improving liquid flow in pipelines—a review and future work opportunities. J. Ind. Engineer. Chem., 20 (4), 1157-1170. DOI: http://dx.doi.org/10.1016/j. jiec.2013.07.050.

Adams, J.J. (2014). Asphaltene adsorption, a literature review. Energ. Fuel., 28 (5), 2831-2856. DOI: 10.1021/ef500282p.

Barailler, F., Heniche, M., & Tanguy, P. A. (2006). CFD analysis of a rotor-stator mixer with viscous fluids. Chemical engineering science, 61(9), 2888-2894.

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport Phenomena (2 Ed.). New York: Jonh Wiley & Son.

Centeno, G., Sánchez-Reyna, G., & Ancheyta, J. (2015). Calculating the viscosity of crude oil blends by binary interaction parameters using literature data. Petrol. Science Technol., 33(8), 893-900. DOI: http://dx.doi.org/10.1080/1 0916466.2014.923456.

Chae, M. S., & Chung, B. J. (2014). Laminar mixed-convection experiments in horizontal pipes and derivation of a semi-empirical buoyancy coefficient. Int. J. Therm. Sci., 84, 335-346. DOI: http://dx.doi.org/10.1016/j. ijthermalsci.2014.06.007.

Chandra, A., Chhabra, R. P. (2012). Laminar free convection from a horizontal semi-circular cylinder to power-law fluids. Int. J. Heat Mass Transfer, 55 (11-12), 2934-2944. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.034.

Daskopoulos, P., & Lenhoff, A. M. (1988). Dispersion coefficient for laminar flow in curved tubes. AIChE J., 34(12), 2052-2058. DOI: 10.1002/aic.690341214.

Gabrienko, A. A., Subramani, V., Martyanov, O. N., & Kazarian, S. G. (2014). Correlation between asphaltene stability in n-Heptane and crude oil composition revealed with In Situ chemical imaging. Adsorpt. Sci. Technol., 32 (4), 243-256.

Hosseini-Dastgerdi, Z., Tabatabaei-Nejad, S. A. R., Sahraei, E., & Nowroozi, H. (2015). Morphology and size distribution characterization of precipitated asphaltene from live oil during pressure depletion. Journal of Dispersion Science and Technology, 36(3), 363-368.

Martínez-Palou, R., Mosqueira, M. DL., Zapata-Rendón, B.M., Mar-Juárez, E., Bernal-Huicochea, C., Clavel-López, J. D. C., & Aburto, J. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: a review. J. Petrol. Sci. Engine., 75 (3): 274-282. DOI: 10.1016/j.petrol.2010.11.020.

Trivedi, R. N., & Vasudeva, K. (1975). Axial dispersion in laminar flow in helical coils. Chem. Engine. Sci., 30 (3), 317- 325. DOI: https://doi.org/10.1016/0009-2509(75)80081-9.

Zendehboudi, S., Shafiei, A., Bahadori, A., James, L. A., Elkamel, A., & Lohi, A. (2014). Asphaltene precipitation and deposition in oil reservoirs–technical aspects, experimental and hybrid neural network predictive tools. Chem. Engine. Res. Design, 92(5), 857-875. DOI: http:// dx.doi.org/10.1016/j.cherd.2013.08.001.

Xue-Yi, Y., Zhang, L. D., & Zheng, J. R., (2014). A double film model and its application to the stability of liquid–liquid stratified flow. Phys. Scripta, 89 (6), 65-101. DOI: https:// doi.org/10.1088/0031-8949/89/6/06500.

Zhang, J., Xu, S., & Li, W. (2012). High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties. Chem. Engine. Processing Process Intensif., 57, 25-41. DOI: http:// dx.doi.org/10.1016/j.cep.2012.04.004.
How to Cite
Suárez, E. J., Rodríguez, A., Chávez, Ángel E., Izquierdo, E., & Palacio, A. (2016). Rigorous analytical solution of the basic concentration model for an injected fluid in a pipe. CT&F - Ciencia, Tecnología Y Futuro, 6(4), 57-66. https://doi.org/10.29047/01225383.03

Downloads

Download data is not yet available.
Published
2016-12-15
Section
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic