Pilot scale anodic oxidation of pretreated vinasse using boron doped diamond electrodes

  • Christian E. Álvarez Pugliese Universidad del Valle
  • Lilibeth Martínez Hernández Universidad del Valle
  • Stephania Imbachi Ordoñez Universidad del Valle
  • Nilson Marriaga Cabrales Universidad del Valle
  • Fiderman Machuca Martínez Universidad del Valle


The anodic oxidation of pretreated vinasse was studied using boron doped diamond (BDD) electrodes at laboratory and pilot scale. In the first stage, two different current densities (60 and 100 mA cm-2) were applied to the cell at different flow rates to confirm that the process was controlled by mass transfer. Assays at different initial pH were performed, finding that this variable does not significantly affect the mineralization of organic pollutants. Three current densities (35, 60 and 100 mA cm-2) were tested at the 25 dm3 pilot scale setup. Also, two different electrolytes (Na2SO4 and NaCl) were used to study the effect of electro-generated oxidant species. The results confirm that the recalcitrant organic compounds that produce the dark brown color on vinasse, like the melanoidins can be effectively treated by the electrochemical oxidation process using BDD electrodes at a pilot scale, with an energy consumption below 50 kWh m-3.


Alvarez-Pugliese, C. E., Marriaga-Cabrales, N., & Machuca- Martínez, F. (2014). A patent review of technologies for wastewater treatment by electrochemical oxidation with boron doped diamond electrodes. Evaluation of Electrochemical Reactors as a New Way to Environmental Protection (661, 79–95).

Alvarez-Pugliese, C. E., Moreno-Wiedman, P., Machuca- Martínez, F., & Marriaga-Cabrales, N. (2011). Distillery Wastewater Treated by Electrochemical Oxidation with Boron-Doped Diamond Electrodes. J. Adv. Oxid. Technol., 14 (2), 213–219.

Arimi, M. M., Zhang, Y., & Geißen, S.-U. (2015). Color removal of melanoidin-rich industrial effluent by natural manganese oxides. Sep. Pur. Tech, 150, 286–291. DOI http://doi.org/10.1016/j.seppur.2015.07.013.

Batista, E. C., Oliveira, R. T. S. de, Ferreira, R. de Q., Miwa, D., & Santos, M. C. dos. (2011). Degradação eletroquímica da vinhaça usando eletrodo de diamante dopado com boro. Química Nova, 34(9), 1517–1520. DOI http://doi. org/10.1590/S0100-40422011000900007.

Cañizares, P., Hernández-Ortega, M., Rodrigo, M. a, Barrera- Díaz, C. E., Roa-Morales, G., & Sáez, C. (2009). A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins. J. Haz. Mat., 164(1), 120–5. DOI http://doi.org/10.1016/j.jhazmat.2008.07.134.

Castro, G. A. (2009). El tratamiento de las vinazas - la recirculación. Pub. Inv., 3(1), 51–67.

Chandra, R., Bharagava, R. N., & Rai, V. (2008). Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bior. Tech., 99(11), 4648-4660. DOI http://doi.org/10.1016/j.biortech.2007.09.057.

Chauhan, M. S., & Dikshit, A. K. (2012). Indian Distillery Industry : Problems and Prospects of Decolourisation of Spentwash. Int. Conf. Fut. Env. Ener., 28, 119–123.

Comminellis, C., & Guohua, C. (2010). Electrochemistry for the Environment. (C. Comninellis & G. Chen, Eds.)Media (First). New York: Springer.

Costa, C. R., Montilla, F., Morallón, E., & Olivi, P. (2010). Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. J. Haz. Mat., 180 (1–3), 429–435. DOI http://doi.org/10.1016/j.jhazmat.2010.04.048

Devesa-Rey, R., Vecino, X., Varela-Alende, J. L., Barral, M. T., Cruz, J. M., & Moldes, a B. (2011). Valorization of winery waste vs. the costs of not recycling. Waste Management (New York, N.Y.), 31 (11), 2327–2335.

Díaz, V., Ibáñez, R., Gómez, P., Urtiaga, A. M., & Ortiz, I. (2011). Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. Water Research, 45 (1), 125–34. DOI http://doi.org/10.1016/j.watres.2010.08.020.

González, T., Domínguez, J. R., Palo, P., Sánchez-Martín, J., & Cuerda-Correa, E. M. (2011). Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination, 280 (1–3), 197–202. DOI http://doi.org/10.1016/j. desal.2011.07.012.

Khandegar, V., & Saroh, A. K. (2014). Treatment of Distillery Spentwash by Electrocoagulation. JJ. Clean Energy Tech., 2(3), 244–247. DOI http://doi.org/10.7763/JOCET.2014. V2.133.

Lekic, M., & Korac, F. (2000). Separation of organochlorine and organophosphorus insecticides by thin-layer chromatography J. Pl. Chrom, 13 (4), 314–316.

Liakos, T. I., & Lazaridis, N. K. (2014). Melanoidins removal from simulated and real wastewaters by coagulation and electro-flotation. Chem. Eng. J., 242, 269–277. DOI http:// doi.org/10.1016/j.cej.2014.01.003.

Liang, Z., Wang, Y., Zhou, Y., & Liu, H. (2009). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem. Eng. J., 152(1), 88–94. DOI http://doi.org/10.1016/j.cej.2009.03.036.

Machuca Martinez, F., Marriaga Cabrales, N. D. J., & Cardona Palomino, C. E. (2013). Wastewater treatment comprising electrodissolution, flocculation and oxidation. Patent US20130153509.

Martínez-Huitle, C. a., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal., B, 87(3–4), 105–145. DOI http://doi.org/10.1016/j. apcatb.2008.09.017.

Medel, A., Bustos, E., Esquivel, K., Godínez, L. a., & Meas, Y. (2012). Electrochemical incineration of phenolic compounds from the hydrocarbon Industry using boron-doped diamond electrodes. Int. J. Photoenergy., 2012, 1–6. DOI http://doi.org/10.1155/2012/681875.

Nava, J. L., Recéndiz, A., Acosta, J. C., & González, I. (2008). Electrochemical incineration of vinasse in filter-press-type FM01-LC reactor using 3D BDD electrode. Water Science and Technology : AJ. Int. Ass. Water Pollut. Res., 58(12), 2413–2419. DOI http://doi.org/10.2166/wst.2008.558.

Palma-Goyes, R. E., Guzmán-Duque, F. L., Peñuela, G., González, I., Nava, J. L., & Torres-Palma, R. a. (2010). Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products. Chemosphere, 81(1), 26–32. DOI http://doi.org/10.1016/j. chemosphere.2010.07.020.

Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chem. Rev., 109(12), 6541–69. DOI http://doi.org/10.1021/cr9001319
Pope, F. D., Hansen, J. C., Bayes, K. D., Friedl, R. R., & Sander, S. P. (2007). Ultraviolet absorption spectrum of chlorine peroxide,. J. Phys. Chem. A., 111(20), 4322–4332. DOI http://doi.org/10.1021/jp067660w.

Robles-González, V., Galíndez-Mayer, J., Rinderknecht-Seijas, N., & Poggi-Varaldo, H. M. (2012). Treatment of mezcal vinasses: a review. J. Biotechnol., 157(4), 524–46. DOI http://doi.org/10.1016/j.jbiotec.2011.09.006.

Wagh, M. P., Nemade P. D. (2015). Treatment processes and technologies for decolourization and COD removal of distillery spent wash : a review . Int. J. Innov. Res. Adv. Engine., 7 (2 ), 30-40.
How to Cite
Álvarez Pugliese, C. E., Martínez Hernández, L., Imbachi Ordoñez, S., Marriaga Cabrales, N., & Machuca Martínez, F. (2016). Pilot scale anodic oxidation of pretreated vinasse using boron doped diamond electrodes. CT&F - Ciencia, Tecnología Y Futuro, 6(4), 67-78. https://doi.org/10.29047/01225383.04


Download data is not yet available.
Scientific and Technological Research Articles