Evaluating the functionalities of NiMo/y-Al2O3-B2O3 catalysts in naphthalene hydrodearomatization and dibenzothiophene hydrodesulfurization

  • Sonia A. Giraldo Universidad Industrial de Santander (UIS)
  • Víctor G. Baldovino Medrano Universidad Industrial de Santander (UIS)
  • Aristóbulo Centeno Universidad Industrial de Santander (UIS)
Keywords: NiMo/y-Al2O3, hydrotreatement,, direct desulfurization route, HYD function.

Abstract

The aim of this work is to contribute to the current understanding on the role of the support’s acidic properties in the hydrogenating function of NiMo/-Al2O3 type catalysts during hydrodearomatization (HDA) and dibenzothiophene (DBT) type molecules desulfurization. NiMo/-Al2O3-B2O3 catalysts of different B2O3 (0, 2, 3, 6 and 8 wt.%) contents were prepared and tested in independent and simultaneous naphthalene (NP) HDA and DBT hydrodesulfurization (HDS) reactions. For HDA the catalytic activity as a function of the B2O3 content followed a volcano-shape trend, with a maximum around 3 wt.% of B2O3. In DBT desulfurization boron was found to have a positive effect in the development of the HYD route of desulfurization possibly due to an increase in total acidity. Conversely, the direct desulfurization route (DDS) was negatively affected by boron addition. The presence of NP during the HDS of DBT was found to have a significant effect in neither total HDS activity nor the HYD/DDS selectivity. The findings in this paper are significant for ultra-deep HDS of heavy oil cuts where increasing in the selectivity to HYD is a must because highly refractory alkyl-DBTs mostly react by this reaction route.

References

Baldovino-Medrano, V. G., Eloy, P., Gaigneaux, E. M., Giraldo, S. A., & Centeno, A. (2009). Development of the HYD route of hydrodesulfurization of dibenzothiophenes over Pd-Pt/γ-Al2O3 catalysts. J. Catal., 267: 129-139.
https://doi.org/10.1016/j.jcat.2009.08.004

Cooper, B. H., & Donnis, B. B. L. (1996). Aromatic satura- tion of distillates: An overview. Appl. Catal. A: Gen., 137 (2): 203-223.
https://doi.org/10.1016/0926-860X(95)00258-8

Cristol, S., Paul, J.-F., Payen, E., Bougeard, D., Hutschka, F., & Clémendot, S. (2004). DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study. J. Catal., 224 (1): 138-147.
https://doi.org/10.1016/j.jcat.2004.02.008

Ding, L., Zhang, Z., Zheng, Y., Ring, Z., & Chen, J. (2006). Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts. Appl. Catal. A: Gen., 301 (2): 241-250.
https://doi.org/10.1016/j.apcata.2005.12.014

Egorova, M., & Prins, R. (2004). Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ- Al2O3 catalysts. J. Catal., 225 (2): 417-427.
https://doi.org/10.1016/j.jcat.2004.05.002

EPA (2008). Online publication. Available on http://www.epa.gov/otaq/gasoline.htm.

European Directive (1998). The Directive 98/70/EC is amended by the European Directive 2003/17/EC of 3 March 2003.

Ferdous, D., Dalai, A. K., & Adjaye, J. (2006). Hydrodenitro- genation and hydrodesulfurization of heavy gas oil using NiMo/Al2O3 catalyst containing boron: Experimental and kinetic studies. Ind. Eng. Chem. Res., 45 (2): 544-552.
https://doi.org/10.1021/ie050094r

Grange, P., & Vanhaeren, X. (1997). Hydrotreating catalysts, an old story with new challenges. Catal. Today, 36 (4): 375-391.
https://doi.org/10.1016/S0920-5861(96)00232-5

Ho, T. C. (2004). Deep HDS of diesel fuel: chemistry and catalysis. Catal. Today, 98 (1-2): 3-18.
https://doi.org/10.1016/j.cattod.2004.07.048

Leliveld, R. G., & Eijsbouts, S. E. (2008). How a 70-year- old catalytic refinery process is still ever dependent on innovation. Catal. Today, 130 (1): 183-189.
https://doi.org/10.1016/j.cattod.2007.07.015

Lewandowski, M., & Sarbak, Z. (2000). Effect of boron ad- dition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts. Fuel, 79 (5): 487-495.
https://doi.org/10.1016/S0016-2361(99)00151-9

Li, D., Sato, T., Imamura, M., Shimada, H., & Nishijima, A. (1997). Spectroscopic characterization of Ni-Mo/γ- Al2O3-B2O3 catalysts for hydrodesulfurization of diben- zothiophene. J. Catal., 170 (2): 357-365.
https://doi.org/10.1006/jcat.1997.1730

Li, D., Sato, T., Imamura, M., Shimada, H., & Nishijima, A. (1998). The effect of boron on HYD, HC and HDS activities of model compounds over Ni-Mo/γ-Al2O3-B2O3 catalysts. Appl. Catal. B: Env., 16 (3): 255-260.
https://doi.org/10.1016/S0926-3373(97)00081-7

Mijoin, J., Pérot, G., Bataille, F., Lemberton, J. L., Breysse, M., & Kasztelan, S. (2001). Mechanistic considerations on the involvement of dihydrointermediates in the hy- drodesulfurization of dibenzothiophene-type compounds over molybdenum sulfide catalysts. Catal. Lett., 71 (3-4): 139-145.
https://doi.org/10.1023/A:1009055205076

Nag, N. K. (1984). On the mechanism of the hydrogenation reactions occurring under hydroprocessing conditions. Appl. Catal. A: Gen., 10 (1): 53-62.
https://doi.org/10.1016/0166-9834(84)85005-8

Pérot, G. (2003). Hydrotreating catalysts containing zeolites and related materials - Mechanistic aspects related to deep desulfurization. Catal. Today, 86 (1-4): 111-128.
https://doi.org/10.1016/S0920-5861(03)00407-3

Sato, S., Kuroki, M., Sodesawa, T., Nozaki, F., & Maciel, G. E. (1995). Surface structure and acidity of alumina-boria catalysts. J. Mol. Catal. A: Chem., 104 (2): 171-177.
https://doi.org/10.1016/1381-1169(95)00105-0

Sibeijn, M., Vanveen, J. A. R., Bliek, A., & Moulijn, J. A. (1994). On the Nature and Formation of the Active Sites in Re2O7 Metathesis Catalysts Supported on Borated Alumina. J. Catal., 145 (2): 416-428.
https://doi.org/10.1006/jcat.1994.1052

Topsøe, H. (2007). The role of Co-Mo-S type structures in hydrotreating catalysts. Appl. Catal. A: Gen., 322 (suppl.): 3-8.
https://doi.org/10.1016/j.apcata.2007.01.002

Torres-Mancera, P., Ramírez, J., Cuevas, R., Gutiérrez- Alejandre, A., Murrieta, F., & Luna, R. (2005). Hy- drodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catal. Today, 107- 108: 551-558.
https://doi.org/10.1016/j.cattod.2005.07.072

Usman, U., Kubota, T., Hiromitsu, I., & Okamoto, Y. (2007). Effect of boron addition on the surface structure of Co- Mo/Al2O3 catalysts. J. Catal., 247 (1): 78-85.
https://doi.org/10.1016/j.jcat.2007.01.010

Usman, U., Takaki, M., Kubota, T., & Okamoto, Y. (2005). Effect of boron addition on a MoO3/Al2O3 catalyst Physicochemical characterization. Appl. Catal. A: Gen., 286 (1): 148-154.
https://doi.org/10.1016/j.apcata.2005.03.020
How to Cite
Giraldo, S. A., Baldovino Medrano, V. G., & Centeno, A. (2010). Evaluating the functionalities of NiMo/y-Al2O3-B2O3 catalysts in naphthalene hydrodearomatization and dibenzothiophene hydrodesulfurization. CT&F - Ciencia, Tecnología Y Futuro, 4(2), 91-99. Retrieved from https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/290

Downloads

Download data is not yet available.
Published
2010-12-15
Section
Scientific and Technological Research Articles