Determination of molecular weight of vacuum residue and their SARA fractions

  • Adan Yovani León Ecopetrol S.A.
  • Martha Josefina Parra Ecopetrol S.A.
Keywords: vacuum residues,, molecular weight, el permeation chromatography, petroleum fraction.

Abstract

The molecular weight of a number of vacuum residue and their SARA fractions (Saturated, Aromatics, Resins, and Asphaltenes) typical of the Barrancabermeja refinery in Colombia were determined using the following methods: Gel Permeation Chromatography (GPC), Vapor Pressure Osmometry, (VPO), and Simulated Distillation at High Temperature adjusted to the Gamma distribution function. Molecular weight results in vacuum residue and saturated and aromatics fraction obtained from the three techniques used show consistency within an acceptable range. However, the molecular weight results in resins and asphaltenes fraction obtained by the VPO technique significant differences compared with the results found using the techniques of GPC and DS-Gamma.

References

Akbarzadeh, K., Alboudwarej, H., Ayatollahi, S., & Yarranton, W. (2004). Estimation of SARA fraction properties with the SRK EOS. JCPT. 43 (9): 31-39.
https://doi.org/10.2118/04-09-02

ASTM D4124-09. Standard Test Method for Separation of Asphalt into Four Fractions. Anual Book of Standard, ASTM International, www.astm.org., West Conshohock- en, PA, 2003.

ASTM D6352-04. Standard Test Method for Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 to 700°C by Gas Chromatography. Anual Book of Standard, ASTM International, www.astm.org., West Conshohocken, PA, 2009.

ASTM D2007. Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorp- tion Chromatographic Method. Anual Book of Standard, ASTM International, www.astm.org., West Conshohock- en, PA, 2003.

Behrenbruch, P., & Dedigama, T. (2007). Classification and characterization of crude oils based on distillation properties. J. Petro. Sci. Eng. 57, 166-170.
https://doi.org/10.1016/j.petrol.2005.10.016

Borges, R., Belsay, C., & Acevedo, S. (2007). Caracteri- zación estructural de distintas fracciones aisladas del crudo extrapesado Carabobo. Revista Latinoamericana de Metalurgia y Materiales. 27(2): 83-94.

Buenrostro, E., Andersen, S., García, J., & Lira, C. (2002). Solubility/molecular structure relationships of as- phaltenes in polar and nonpolar media. Energy & Fuels., 16 (3): 732-74.
https://doi.org/10.1021/ef0102317

Castellanos-Borrero, E., & Garrido, A. (2009). Desulfuración de diesel de bajo azufre de una planta de fraccionamiento de líquidos de gas. Ingeniería Química. 477, 62-69.

Cervo, E. G., & Thies, M. C. (2010). Control of molecular weight distribution of petroleum pitches via multistage su- percritical extraction. J. of Supercritical Fluids. 51, 345-352.
https://doi.org/10.1016/j.supflu.2009.09.010

Gacén, J., Maíllo, J., Knott, J., & Altenhofen, U. (1985). In- terpretation of the differential solubility of poly (ethylene terephthalate) in function of temperature. Bol. Intextar. 87, 51-60.

Golam, R., & Mansouri, S. (2006). Cubic EOS calculates heavy oil SARA fractions. Oil and Gas J. 11, 48-49.

Guangua, Yang & Ren-And, Wang (1999). The supercritical fluid extractive fractionation and the characterization of heavy oils and petroleum residua. J. Petro. Sci. Eng. 22, 47-52.
https://doi.org/10.1016/S0920-4105(98)00056-4

Guzmán, A., Bueno, A., & Carbognani, L. (2009). Molecular weight determination of asphaltenes from Colombian crudes by size exclusion chromatography (SEC) and vapor pressure osmometry (VPO). Petroleum Science and Technology, 27 (8): 801-816.
https://doi.org/10.1080/10916460802455491

Hunt, Jerry-E., & Winans, Randall-E. (1997). Characteriza- tion of asphaltenes from processed resids. Preprint, for presentation at the 213th ACS National Meeting to be held in San Francisco, CA., April 13-17.

Keng, C., Chunming, X., Yunxiang H., & Renan, W. (1997). Supercritical fluid extraction reveals resid properties. Oil & Gas J. 20, 66-69.

Kharrat, A. M. (2009). Characterization of Canadian heavy oils using sequential extraction approach. Energy & Fuels, 23, 828-834.
https://doi.org/10.1021/ef800743q

León, B. A., Parra, M. R., & Grosso, J. L. (2008). Estima- tion of critical properties of typically Colombian vacuum residue SARA fractions. CT&F - Ciencia, Tecnología y Futuro, 3 (4): 129-142.

Masuda, K., Okuma O., Kanaji M., & Matsumara, T. (1996). Chromatographic characterization of preasphaltenes in liquefied products from Victorian brown coal. Fuel, 75 (9): 1065.
https://doi.org/10.1016/0016-2361(96)00075-0

Mullins, O. C., Sheu, E. Y., Hammami, A., & Marshall, A. G. (2007). Asphaltenes, Heavy oils and petroleomics. New York: Springer: 21-26.
https://doi.org/10.1007/0-387-68903-6

Navarro, L., Álvarez, M., Groso, J., & Navarro, U. (2004). Sepa- ración y caracterización de resinas y asfaltenos provenientes del crudo Castilla. Evaluación de su interacción molecular. CT&F - Ciencia, Tecnología y Futuro. 2 (5): 52-67.

Parra, M., & Cañas, W. (2007). Thermodynamic model for solvent deasphalting of vacuum residue. Proceedings annual meeting, AIChe J., Nov. 4.

Peramanu, S., Pruden, B., & Rahimi, P. (1999). Molecular weight and specific gravity distributios for Athabasca and cold lake bitumen and their satúrate, aromatic, resin, and as- phaltene fractions. Ind. Eng. Chem Res., 38 (8): 3121-3130.
https://doi.org/10.1021/ie9806850

Sabbagh, K., Akbarzadeh, K., badamchi-Zadeh, A., Svrcek, W. Y., & Yarranton, W. (2006). Applying the PR - EOS to asphaltene precipitation from n-alkane diluted heavy oils and bitumens. Energy and fuels. 20, 625-634.
https://doi.org/10.1021/ef0502709

Schabron, John- F., & Speight, James-G.(1998). Correlation between carbon residue and molecular weight. Petrol. Science and Technology, 16, 361-364.
https://doi.org/10.1080/10916469808949788

Sheua E. Y., De Tara M. M., & Storma D. A. (1991). Reo- logical properties of vacuum residue fraction in organic solvents. Fuel, 70, 1151-1156.
https://doi.org/10.1016/0016-2361(91)90236-4

Tie-Pan, S., Yun-Xiang, H., Tong, S., & Ren-An, W. (1997). Characterization petroleum vacuum reidue by supercriti- cal fluid extraction and fractionation. Ind. Eng. Chem. Res., 36; 3988-3992.
https://doi.org/10.1021/ie970152b

Wiehe, I. A., & Liang, K. S. (1996). Asphaltenes, resins and other petroleum macromolecules. Fluid Phase Equilibria, 117, 201-210.
https://doi.org/10.1016/0378-3812(95)02954-0

Wu, J., & Preusnitz, M. (1998). Molecular Thermodynamic Framework for Asphaltene-Oil Equilibria, AIChe J., 44, 188-1199.
https://doi.org/10.1002/aic.690440516

Yarranton, H. W., Alboudwarej, H., & Jakher, R. (2000). Investigation of asphaltene association with vapor pres- sure osmometry and interfacial tension measurements. Ind. Eng. Chem. Res., 39, 2916-2924.
https://doi.org/10.1021/ie000073r

Zhao, S., Zhiming, X., Chunming, X., Keng, H., C. & Renan, W. (2005). Systematic characterization of petroleum residua based on SFEF. Fuel., 84, 635-645.
https://doi.org/10.1016/j.fuel.2004.03.022

Zhu, Y., Fu, J., Sheng, G., Xiang, T., & Bowen, M. (1998). Eochemical significance of pyrrolic nitrogen compounds in various kinds of crude oils from the Taim Basin. Chinese Science Bulletin, 43 (16): 1366-1370.
https://doi.org/10.1007/BF02883684
How to Cite
León, A. Y., & Parra, M. J. (2010). Determination of molecular weight of vacuum residue and their SARA fractions. CT&F - Ciencia, Tecnología Y Futuro, 4(2), 101-112. Retrieved from https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/291

Downloads

Download data is not yet available.
Published
2010-12-15
Section
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)