Computational tool for material balances control in natural gas distribution network

  • Jesús David Badillo Herrera Corporación Centro de Desarrollo Tecnológico de GAS.
  • Arlex Chaves Universidad Industrial de Santander.
  • José Augusto Fuentes Osorio Corporación Centro de Desarrollo Tecnológico de GAS.
Keywords: Random errors, Gross errors, Data reconciliation

Abstract

In natural gas industry, measurement of process variables allows to assess the quantity and quality of commercialized gas. Nevertheless, since errors, gross and random are always present in measurements, mass and energy balances are not satisfied. This situation leads natural gas distribution companies into invoicing issues. In this paper, a computational tool is proposed, which guarantees that the law of conservation of mass is obeyed by decreasing random error effects and detecting systematic deviations in the measurement equipment (gross errors). This tool is based on Data Reconciliation (DR) and Gross Error Detection (GED) techniques. Different DR and GED methodologies were studied by means of assessment of their advantages and disadvantages. Non-conventional DR and GED methods are proposed as part of the developed tool in order to obtain accurate reconciled results in cases of difficult gross error detections on natural gas distribution systems. The tool was validated by a typical literature problem, and it was then applied to a natural gas distribution network. Results were in agreement with reports of failures of some instruments.

References

Almasy, G. & Mah, R. S. H. (1984). Estimation of measurement error variances from process data. Ind. Eng. Chem. Process Des. Dev., 23(4), 779-784.
https://doi.org/10.1021/i200027a026

Bagajewicz, M. J. & Jiang, Q. (1998). Gross error modeling and detection in plant linear dynamic reconciliation. Comp. Chem. Eng., 22(12), 1789-1809.
https://doi.org/10.1016/S0098-1354(98)00248-8

Bagajewicz, M. J. & Cabrera, E. (2003). Data reconciliation in gas pipeline systems. Ind. Eng. Chem. Res., 42(22), 5596-5606.
https://doi.org/10.1021/ie020774j

Bagajewicz, M. J. (2010). Smart process plants. Software and hardware solutions for accurate data and profitable operations. New York: McGraw-Hill.

Crowe, C. M. (1996). Data reconciliation-progress and challenges. J. Process Control, 6(2-3), 89-98.
https://doi.org/10.1016/0959-1524(96)00012-1

Fusiello, A., Trucco, E., Tommasini, T. & Roberto, V. (1999). Improving feature tracking with robust statistics. Pattern Analysis & Applications, 2(4), 312-320.
https://doi.org/10.1007/s100440050039

Heenan, W. A., Cardiel, M. G. & Serth, R. W. (1987). Gross error detection and data reconciliation in natural gas distribution systems: A feasibility study. American Institute of Chemical Engineers spring national meeting, Houston, TX, USA. Technical Paper 67b.

Iordache, C., Mah, R. S. H. & Tamhane, A. C. (1985). Performance studies of the measurement test for detecting gross errors in process data. AIChE J., 31(7), 1187-1201.
https://doi.org/10.1002/aic.690310717

Jiang, Q. & Bagajewicz, M. J. (1999). On a strategy of serial identification with collective compensation for multiple gross error estimation in linear data reconciliation. Ind. Eng. Chem. Res., 38(5), 2119-2128.
https://doi.org/10.1021/ie980431e

Kuehn, D. R. & Davidson, H. (1961). Computer control. II. Mathematics of control. Chem. Eng. Progress, 57(6), 44-47.

Madron, F. (1992). Process plant performance: Measurement and data processing for optimization and retrofits. Chichester: Ellis Horwood Limited.

Mah, R. S. H., Stanley, G. M. & Downing, D. M. (1976). Reconciliation and rectification of process flow and in- ventory data. Ind. Eng. Chem. Process Des. Dev., 15(1), 175-183.
https://doi.org/10.1021/i260057a030

Mei, C., Su, H. & Chu, J. (2006). An NT-MT combined method for gross error detection and data reconciliation. Chinese J. Chem. Eng., 14(5), 592-596.
https://doi.org/10.1016/S1004-9541(06)60120-1

Narasimhan, S. & Mah, R. (1987). Generalized likelihood ratio method for gross error identification. AIChE J., 33(9), 1514-1521.
https://doi.org/10.1002/aic.690330911

Narasimhan, S. & Jordache, C. (2000). Data reconciliation & gross error detection. An intelligent use of process data. Houston: Gulf Publishing.
https://doi.org/10.1016/B978-088415255-2/50008-2

Oliveira, E. C. & Aguiar, P. F. (2009). Data reconciliation in the natural gas industry: Analytical applications. Energy & Fuels, 23(7), 3658-3664.
https://doi.org/10.1021/ef9001428

Özyurt, D. B. & Pike, R. W. (2004). Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes. Comp. Chem. Eng., 28(3), 381-402.
https://doi.org/10.1016/j.compchemeng.2003.07.001

Rollins, D. K. & Davis, J. F. (1992). Unbiased estimation of gross errors in process measurements. AIChE J., 38(4), 563-572.
https://doi.org/10.1002/aic.690380410

Sánchez, M., Romagnoli, J., Jiang, Q. & Bagajewicz, M. (1999). Simultaneous estimation of biases and leaks in process plants. Comp. Chem. Eng., 23(7),841-857.
https://doi.org/10.1016/S0098-1354(99)00104-0

Serth, R. W. & Heenan, W. A. (1986). Gross error detection and data reconciliation in steam-metering systems. AIChE J., 32(5), 737-742.
https://doi.org/10.1002/aic.690320503
How to Cite
Badillo Herrera, J. D., Chaves, A., & Fuentes Osorio, J. A. (2013). Computational tool for material balances control in natural gas distribution network. CT&F - Ciencia, Tecnología Y Futuro, 5(2), 31-46. https://doi.org/10.29047/01225383.55

Downloads

Download data is not yet available.
Published
2013-06-15
Section
Scientific and Technological Research Articles