Vacuum membrane distillation: modeling and analysis for recovery of ethanol from ethanol/water solutions.

  • Carlos Jesús Muvdi Nova Universidad Industrial de Santander.
  • Beatriz Torrestiana Sánchez Instituto Tecnológico de Veracruz.
  • Rosa Isela Ortiz Basurto Instituto Tecnológico de Tepic.
  • Crisóstomo Barajas Ferreira Universidad Industrial de Santander
  • Fredy Wsvaldo Barón Núñez Universidad Industrial de Santander.
  • César Augusto Guevara Lastre Universidad Industrial de Santander.
  • Omar Andrés Benavides Prada Universidad Industrial de Santander.
Keywords: Vacuum distillation, Membranes, Ethano, Separation, Mass transfer, Energy transfer, Mathematical model


A mathematical model was developed to describe the mass and energy transfer in the ethanol separation ion. This model is one of the few proposed for studying the ethanol recovery using vacuum membrane distillation; hence, only Soni, Abildskov, Jonsson and Gani (2008) have proposed a more complex model. The mathematical model was validated using fourcase studies reported in literature. The model fairly describes reported data obtained under the following operating conditions: 20 - 70ºC, ethanol concentration from 0.25 to 5% w/w, pressure of 2000 - 6000 Pa and Reynolds of 50 - 2700. The influence of operation conditions and membrane properties on ethanol and water flux, as well as on ethanol concentration in permeate were studied with this validated model by using Statgraphics® Centurion XVI.I and a factorial experiment design. Pareto analysis showed that operating conditions and membrane properties influence the process variables in different ways. For example, both flux values increase with temperature, pore diameter and porosity; but membrane thickness has a negative effect on water flux (for ethanol flux it was not significant). On the other hand, increasing pressure, pore diameter or porosity decreases permeate ethanol concentration. Last parameter increases with feed ethanol concentration and membrane thickness. In vacuum membrane distillation, the model predicts a permeate ethanol concentration 8.8 times higher than feed concentration, depending on operating conditions and membrane specifications.


Bandini, S., Saavedra, A. & Sarti, G. C. (1997). Vacuum membrane distillation: Experiments and modeling. AIChE J., 43(2), 398-408.

Bird, R., Stewart, W. & Lightfoot, E. (1998). Fenómenos de transporte: Un estudio sistemático de los fundamentos de transporte de materia, energía y cantidad de movimiento. (2da edición). México: Reverte.

Bocquet, S., Gascons-Viladomat, F., Muvdi-Nova, C., Sanchez, J., Athes, V. & Souchon, I. (2006). Membrane- based solvent extraction of aroma compounds: choice of configurations of hollow fiber modules based on experiments and simulation. J. Memb. Sci., 281(1-2), 358-368.

Diban, N., Voinea, O. C., Urtiaga, A. & Ortiz, I. (2009). Vacuum membrane distillation of the main pear aroma compound: experimental study and mass transfer modeling. J. Memb. Sci., 326(1), 64-75.

García, M. (1998). Destilación en membranas de disoluciones acuosas de alcoholes. Tesis Doctoral, Departamento de Física aplicada I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, España, 197pp.

Geankoplis, C. J. (1998). Procesos de transporte y operaciones unitarias. (3ra edición). México: Continental.

Izquierdo-Gil, M. A. & Jonsson, G. (2003). Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J. Memb. Sci., 214(1), 113-130.

Kamalesh, K. & Winston, W. S. (1992). Membrane Hand- book. (2da. edición). New York: Chapman & Hall.

Lawson, K. W. & Lloyd, D. R. (1996). Membrane distilla- tion I. Module design and performance evaluation using vacuum membrane distillation. J. Memb. Sci., 120(1), 111-121.

Lewandowicz, G., Bialas, W., Marczewski, B. & Szy- manowska, D. (2011). Application of membrane distilla- tion for ethanol recovery during fuel ethanol production. J. Memb. Sci., 375(1-2), 212-219.

Luong, J. H. T. (1985). Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng., 27(3), 280-285.

Martínez, L., Florido-Díaz, F. J., Hernández, A. & Prádanos, P. (2002). Characterizations of three hydrophobic porus membranes used in distillation. Modeling and evaluation of their water vapor permeabilities. J. Memb. Sci., 203: 15-27.

Perry, R. H. & Green, D. W. (2008). Perry's Chemical Engineers' Handbook. Tomo II. (8th Ed). México: McGraw- HILL.

Sarti, G., Gostoli, C. & Bandini, S. (1993). Extraction of organic components from aqueous streams by vacuum membrane distillation. J. Memb. Sci., 80(1), 21-33.

Smith, J. M., Van Ness, H. C. & Abbott, M. M. (1997). Introducción a la termodinámica en ingeniería química. (5ta. edición). México: McGRAW-HILL.

Soni, V., Abildskov, J., Jonsson, G. & Gani, R. (2008). Modeling and analysis of vacuum membrane distillation for recovery of volatile aroma compounds from black currant juice. J. Memb. Sci., 320(1-2), 442-455.

Soni, V., Abildskov, J., Jonsson, G. & Gani, R. (2009). A general model for membrane-based separation processes. Comp. & Chem. Eng., 33(3), 644-659.

Tang, Y., Li, Z. & Li, Y. (1995).Salting effect in partially miscible systems of n-butanol-water and butanone-water 2. An extended Setschenow equation and its application. Fluid Phase Equilibria, 105(2), 241-258.

Yeom, C. K., Lee, S. H., Lee, J. M. & Song, H. Y. (2002). Modeling and evaluation of boundary layer resistance at feed in the permeation of VOC/N2 mixtures through PDMS membrane. J. Memb. S., 204(1-2), 303-322.

Zamora, M. (1998). Termo I: Un Estudio de los Sistemas Termodinámicos. Manuales Universitarios. Secretariado de Publicaciones: Universidad de Sevilla.
How to Cite
Muvdi Nova, C. J., Torrestiana Sánchez, B., Ortiz Basurto, R. I., Barajas Ferreira, C., Barón Núñez, F. W., Guevara Lastre, C. A., & Benavides Prada, O. A. (2013). Vacuum membrane distillation: modeling and analysis for recovery of ethanol from ethanol/water solutions. CT&F - Ciencia, Tecnología Y Futuro, 5(2), 47-60.


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)