Acid hydrolysis of water hyacinth to obtain fermentable sugars

  • Juan Guillermo Reales Alfaro Universidad Popular del Cesar.
  • Lizeth Tairina Trujillo Daza Universidad Popular del Cesar.
  • Giselle Arzuaga Lindado Universidad Popular del Cesar.
  • Hader Iván Castaño Peláez Politécnico Colombiano Jaime Isaza Cadavid.
  • Ángel David Polo Córdoba Universidad Popular del Cesar.
Keywords: Eichhornia crassipes, Biofuel, Lignocellulose, Fermentable sugars, Sulfuric acid pretreatment

Abstract

In order to take advantage of the aquatic weed water hyacinth (Eichhornia crassipes) as lignocellulosic feedstock for the production of reducing sugars, a bromatological characterization of the leaves and stems of the plant was performed. Then,  the effects of the sulfuric acid concentration (1 - 3% v/v), the concentration of solids (10 to 12.5% w/v) and the reaction time (15 - 25 min) at 121°C/15 psi in the production reducing sugars were studied by employing a central composite design. It was found that the acid concentration was the most significant variable. The optimal conditions were solids 11.25% p/v, H2SO4 2% v/v and 20 minute reaction time. These conditions yielded a concentration of reducing sugars of 33.3 g/L.

References

Abdelhamid, A. M. & Gabr, A. A. (1991). Evaluation of water hyacinth as feed for ruminants. Arch. Anim. Nutr., 41(7/8), 745-756.
https://doi.org/10.1080/17450399109428519

Abraham, M. & Kurup, M. (1996). Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia Crassipes)-Influence of various physic-chemical factors. J. Ferm. Bioeng., 82(3), 259-263.
https://doi.org/10.1016/0922-338X(96)88817-9

AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. (1990). 15th ed. Arlington, VA.

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Manag., 52(2), 858-875.
https://doi.org/10.1016/j.enconman.2010.08.013

Cronk, J. & Fennessy, M. (2001). Wetland plants: Biology and ecology. Washington D. C.: Lewis Publishers.

Dien, B., Nichols, N., O'Bryan, P. & Bothast, R. (2000). Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochemistry Biotechnol., 84-86(1-9), 181-196.
https://doi.org/10.1385/ABAB:84-86:1-9:181

Ganguly, A., Chatterjee, P. K. & Dey, A. (2012). Studies on ethanol production from water hyacinth. Areview. Renew. Sust. Energ. Rev., 16(1), 966-972.
https://doi.org/10.1016/j.rser.2011.09.018

Gunnarsson, C. C. & Petersen, C. M. (2007). Water hyacinths as a resource in agriculture and energy production: A li- terature review. Waste Manag., 27(1), 117-129.
https://doi.org/10.1016/j.wasman.2005.12.011

Guragain, Y., De Coninck, J., Husson, F., Durand, A. & Rakshit, S. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour. Technol., 102(6), 4416-4424.
https://doi.org/10.1016/j.biortech.2010.11.125

Gutiérrez, C. & Arias, J. (2009). Obtención de celulosa a partir de material lignocelulósico proveniente de la extracción de aceite de palma. Tesis de pregrado Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia, 98pp.

Harun, M. Y., Dayang, A. B., Zainal, Z. & Yunus, R. (2011). Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour. Technol., 102(8), 5193-5199
https://doi.org/10.1016/j.biortech.2011.02.001

Ho, N., Chen, Z. & Brainard, A. (1998). Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl. Environ. Microbiol., 64(5), 1852-1859.
https://doi.org/10.1128/AEM.64.5.1852-1859.1998

Isarankura, C., Tantimongcolwat, T., Kongpanpee, T., Prabkate, P. & Prachayasittikul, V. (2007). Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J., 6: 167-176.

Kumar, A., Singh, L. K. & Ghosh, S. (2009a). Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichiastipitis. Bioresour. Technol., 100(13), 3293-3297.
https://doi.org/10.1016/j.biortech.2009.02.023

Kumar, P., Barret, D. M., Delwiche, M. J. & Stroeve, P. (2009b). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48(8), 3713-3729.
https://doi.org/10.1021/ie801542g

Ma, F., Yang, N., Xu, C., Yu, H., Wu, J. & Zhang, X. (2010). Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour. Technol., 101(24), 9600-9604.
https://doi.org/10.1016/j.biortech.2010.07.084

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem., 31(3), 426-428.
https://doi.org/10.1021/ac60147a030

Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M. & Fujita, M. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol., 99(7), 2495-2500.
https://doi.org/10.1016/j.biortech.2007.04.056

Misson, M., Haron, R., Ahmad, M. & Saidina, M. (2009). Pretreatment of empty fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour. Technol. 100(11), 2867-2873.
https://doi.org/10.1016/j.biortech.2008.12.060

Moran, P. (2006). Water nutrients, plant nutrients, and indicators of biological control on waterhyacinth at Texas Field Sites. J. Aquat. Plant Manage. 44: 109-114.

Nigam, J. N. (2002). Bioconversion of water-hyacinth (Eich- hornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97(2), 107-116.
https://doi.org/10.1016/S0168-1656(02)00013-5

Oliva, J. (2003). Efectos de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. Tesis Doctoral Fac. Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, España, 160pp.

Patrouilleau, R., Lacoste, C., Yapura, P. & Casanovas, M. (2006). Perspectivas de los biocombustibles en Argentina, con énfasis en el etanol de base celulósica. Informe Técnico, Unidad de Coyuntura y Prospectiva. Instituto Nacional de Tecnología Agropecuaria.

Peñuela, M. C., Da Silva, J., Bezerra De Sousa, M. & Pereira, N. (2007). Enzymatic hydrolysis optimization to ethanol production duction by simultaneous saccharification and fermentation. Appl. Biochemistry Biotechnol., 137-140(1-12), 141-153.
https://doi.org/10.1007/s12010-007-9046-2

Poddar, K., Mandal, L. & Banerjee, G. C. (1991). Studies on water hyacinth (Eichhornia crassipes) - Chemical com- position of the plant and water from different habitats. Indian Veterinary J., 68(9), 833-837.

Ramírez, S. (2005). Evaluación de la degradación natural de la especie Eichhornia crassipes (buchón) para el embalse del muña. Tesis de pregrado Fac. Ingeniería, Universidad de Los Andes, Bogotá, Colombia, 106pp.

Rangel, O., Rivera, O., Muñoz, Y., Medina, G., Ardila, M., Pulido, H., Arellano, H., Carvajal, J., Martínez, M., Rocha, M., Romero, I., Moreno, M., Ávila, S., Estupiñan, S., Galvis, G., Gutiérrez, M., López, Y., Cruz, M., Galeano, G. & López, L. (2007). Estudio de inventario de fauna, flora, descripción biofísica y socioeconómica y línea base ambiental Ciénaga de Zapatosa. Informe Técnico, Corporación Autónoma Regional del Cesar.

Reddy, K. R. & D'Angelo, E. M. (1990). Biomass yield and nutrient removal by water hyacinth as influenced by water hyacinth (Eichhornia crassipes) as influenced by harvesting frequency. Biomass, 21(1), 27-42.
https://doi.org/10.1016/0144-4565(90)90045-L

Robertson, J. B. & Van Soest, P. J. (1981). The detergent system of analysis and its application to human foods. The analysis of dietary fibers in food. New York: Marcel Dekker.

Sánchez, A. M., Gutiérrez, A., Muñoz, J. & Rivera, C. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 5: 61-91.

Silverstein, R. A., Chen, Y., Sharma-Shivappa, R., Boyette, M. & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol., 98(16), 3000-3011.
https://doi.org/10.1016/j.biortech.2006.10.022

Sornvoraweat, B. & Kongkiattikajorn, J. (2010). Separated hydrolysis and fermentation of water hyacinth leaves for ethanol production. KKU Res. J., 15(9), 794-802.

Wood, B., Beall, D. & Ingram, L. (1997). Production of recombinant bacterial endoglucanase as a coproduct with ethanol during fermentation using derivates of Escherichia coli KO11. Biotechnol. Bioeng., 55(3), 547-555.
https://doi.org/10.1002/(SICI)1097-0290(19970805)55:3<547::AID-BIT12>3.0.CO;2-D

Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Appl. Biol. Sci.., 267(5195), 240-243.
https://doi.org/10.1126/science.267.5195.240
How to Cite
Reales Alfaro, J. G., Trujillo Daza, L. T., Arzuaga Lindado, G., Castaño Peláez, H. I., & Polo Córdoba, Ángel D. (2013). Acid hydrolysis of water hyacinth to obtain fermentable sugars. CT&F - Ciencia, Tecnología Y Futuro, 5(2), 101-112. https://doi.org/10.29047/01225383.60

Downloads

Download data is not yet available.
Published
2013-06-15
Section
Scientific and Technological Research Articles