Kinetic parameters determination of FCC gasoline hydrotreating using genetic algorithms

  • Sonia A. Giraldo Duarte Universidad Industrial de Santander.
  • David de Jesús Pérez Martínez Ecopetrol S.A.
  • Carlos Eduardo Bravo Villarreal Universidad Industrial de Santander.
  • Gustavo Alberto Granados Zarta Universidad Industrial de Santander.
  • Carlos Mauricio Celis Cornejo Universidad Industrial de Santander.
Keywords: Hydrodesulfurization, Olefins hydrogenation, CoMo/y-Al2O3 catalyst, Stochastic optimization


The kinetics parameters for the simultaneous reactions of hydrodesulfurization and hydrogenation of synthetic Fluid Catalytic Cracking (FCC) naphtha over CoMo/y-Al2O3 catalyst were determined. The proposed kinetic model considered a Langmuir-Hinshelwood adsorption mechanism (with 16 steps) with just one kind of active site. The amount of experimental data obtained was relatively limited, thus a genetic algorithm accompanied by an optimization through the Nelder-Mead Simplex method were used for the parameter estimations. Trimethylpentenes and 2-methylthiophene were used as representative molecules of unsaturated and sulfur compounds in FCC naphtha respectively. It was possible to calculate kinetic and thermochemical parameters, such as activation energies, adsorption heats and frequency factors with a good enough approach. This methodology results very useful since it allows the parameters determination with accuracy, reducing the amount of experimentation in comparison with traditional methodologies.


Abassi, R. & Fatemi, S. (2009). Mathematical modelling of gas oil HDS and optimization of operational conditions in Trickle-Bed reactor by genetic algorithm. Int. J. Chem. Reactor Eng., 7(1), 1542-6580.

Brunet, S., Mey, D., Pérot, G., Bouchyb, C. & Diehlb, F. (2005). On the hydrodesulfurization of FCC gasoline: a review. Appl. Catal. A, 278(2), 143-172.

Daudin, A., Perot, G., Brunet, S., Raybaund, P. & Bounchy, C. (2007). Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts. J. Catal., 248(1), 111-119.

Daudin, A., Lamic, A., Perot, G., Brunet, S., Raybaund, P. & Bounchy, C. (2008). Microkinetic interpretation of HDS/ HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides. Catal. Today, 130(1), 221-230.

Edgar, T. F., Himmelblau, D. M. & Lasdon, L. S. (2001). Optimization of chemical processes. Pennsylvania: Mc Graw Hill.

Elliott, L., Ingham, D. B., Kyne, A. G., Mera, N. S., Pourkashanian, M. & Wilson, CW. (2004). Genetic algorithms for optimisation of chemical kinetics reaction mechanism. Prog. Energy Combust. Sci., 30(3), 297-328.

Farooji, N. R., Vatani, A. & Mokhtari, S. (2010). Kinetic simulation of oxidative coupling of methane over perovskite catalyst by genetic algorithm: Mechanistic aspects. J. Nat. Gas. Chem., 19(4), 385-391.

Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computation. Science, 261(5123), 872-878.

Jarullah, A, Mujtaba I. & Wood, A. S. (2011). Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil. Chem. Eng. Sci., 66:(5), 859-871.

Jongpatiwut, S., Li, Z., Resasco, D. E., Alvarez,W. E., Sughrue, E. L. & Dodwell, G. W. (2004). Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimeta- llic Pt-Pd catalyst. Appl. Catal. A, 262: 241-253.

Kasztelan, S. & Guillaume, D. (1994). Inhibiting effect of hydrogen sulfide on toluene hydrogenation over a molybdenum disulfide/alumina catalyst. Ind. Eng. Chem. Res., 33(2), 203-210.

Kaufmann, T., Kaldor, A., Stuntz, G., Kerby, M. & Ansell, L. (2000). Catalysis science and technology for cleaner transportation fuels. Appl. Catal. Today, 62(1), 77-90.

Le Page, J. F. (1987). Applied Heterogeneous Catalysis. Paris:Editions Technip.

Li, M., Li, H., Jiang, F., Chu, Y. & Nie, H. (2009). Effect of surface characteristics of different alumina on metal- support interaction and hydrodesulfurization activity. Fuel, 88(7), 1281-1285.

Martínez-González, J. L. (2001). Optimización y ajuste de parámetros mediante el Método Simplex (Nelder - Mead). 1a Reunión de Usuarios de EcosimPro, UNED, Madrid: EcosimPro.

Mey, D., Brunet, S., Canaff, C., Maugé, F., Bouchy, C. & Diehl, F. (2004). HDS of a model FCC gasoline over a sulfided CoMo/y-Al2O3 catalyst: Effect of the addition of potassium. J. Catal., 227(2), 436-447.

Miller, J., Reagan, W., Kaduk, J., Marshall, C. & Kropf, A. (2000). Selective hydrodesulfurization of FCC naphtha with supported MoS2 catalysts: The role of cobalt. J. Catal., 193(1), 123-131.

Montgomery, D. C. & Runger, C. G. (2006). Probabilidad y estadística aplicadas a la ingeniería. 2nd Ed. México D.F: Limusa Wiley.

Morterra, C. & Magnacca, G. (1996). A case of study: Surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal. Today, 27(3-4), 497-532.

Navidi. W. (2006). Estadística para ingenieros y científicos, México, D.F.: McGraw Hilll.

Lancheros, N. B. & Carreño, S. A. (2008). Determinación de la cinética de las reacciones simultáneas de hidrodesulfuración del 2-metiltiofeno e hidrogenación del 2,4,4 trimetilpenteno sobre el catalizador CoMo/γ-Al2O3. Tesis de pregrado, Ingeniería Química. UIS, Bucaramanga, Colombia, 51pp.

Okamoto, Y., Tomioka, H., Imanaka, T. & Teranishi, S. (1980). Surface structure and catalytic activity of sulfided CoMo/ Al2O3 catalysts: Hydrodesulfurization and hydrogenation activities. J. Catal., 66(1), 93-100.

Parijs, I. & Froment, G. F. (1986). Kinetics of hydrodesul- furization on a CoMo/γ-Al2O3 catalyst. 1. Kinetics of the hydrogenolysis of thiophene. Ind. Eng. Chem. Prod. Res. Dev, 25(3), 431-436.

Pérez-Martínez, D. J., Eloy, P., Gaigneaux, E. M., Giraldo, S. A. & Centeno, A. (2010). Study of the selectivity in FCC naphtha hydrotreating by modifying the acid base balance of CoMo/Al2O3 catalysts. Appl. Catal. A, 390(1-2), 59-70.

Ratnasamy, P. & Sivasanker, S. (1980). Structural chemistry of Co-Mo-Alumnina catalysts. Catal. Rev. Sci. Eng., 22(3), 401-429.

Slomkiewicz, P. M. (2004). Determination of the Langmuir- Hinshelwood kinetic equation of synthesis of ethers. Appl. Catal. A, 269(1-2), 33-42.

Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today, 86(1-4), 211-263.

Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. (1996). Current status of transition-state theory. J. Phys. Chem., 100(31), 12771-12800.

United States Environmental Protection Agency - EPA (2011). Standards for gasoline. United States. Accessed: May 12, 2013. Available in:

Vanrysselberghe, V. & Froment, G. F. (1996). Hydrodesulfu- rization of dibenzothiophene on a CoMo/γ-Al2O3 catalyst: Reaction network and kinetics. Ind. Eng. Chem. Res, 35(10), 3311-3318.

Vanrysselberghe, V., Le Gall, R. & Froment, G. F. (1998). Hydrodesulfurization of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene on a CoMo/γ-Al2O3 catalyst: Reaction network and kinetics. Ind. Eng. Chem. Res., 37: 1235-1242.

Vrinat, M. (1983). The kinetics of the hydrodesulfurization process: A review. Appl. Catal., 6(2), 137-158.

Vrinat, M., Laurenti, D. & Geantet, C. (2012). Use of competitive kinetics for the understanding of deep hy- drodesulfurization and sulfide catalysts behavior. Appl. Catal. B, 128: 3-9.
How to Cite
Giraldo Duarte, S. A., Pérez Martínez, D. de J., Bravo Villarreal, C. E., Granados Zarta, G. A., & Celis Cornejo, C. M. (2013). Kinetic parameters determination of FCC gasoline hydrotreating using genetic algorithms. CT&F - Ciencia, Tecnología Y Futuro, 5(3), 79-94.


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic