The corrosion process of p-110 steel in stimulation fluids used in the oil industry

  • Jorge Andrés Calderón Gutiérrez Universidad de Antioquia.
  • Gloria Fernanda Bonilla Universidad de Antioquia.
  • Javier Alejandro Carreño Instituto Nacional de Tecnología.
Keywords: EDTA electrolytes, Chelating agents, Electrochemical techniques, Metal dissolution


The use of chelating agents in the oil well stimulation processes has been proposed as an alternative to the acid treatment when the formations damage do not allow the usage of strong chemical attack. However, this procedure can arouse the corrosion of the steel used in the infrastructure of the oil production. In this study, the corrosion kinetics of the P-110 steel in ethylenediaminetetraacetic acid (EDTA)-based fluids is assessed under different conditions of evaluation. Linear polarization was performed in different hydrodynamic regimes and at different temperatures, in order to evaluate the kinetic of steel corrosion. The working electrolyte solution comprises 10% disodium EDTA and 20% tetrasodium EDTA. The increase of temperature from 25 to 80°C in both electrolytes increments the corrosion rate of steel in at least one order of magnitude; particularly in EDTA-Na2 solutions. Corrosion rates of 0.29x101 and 1.67x102 mm.y-1 were measured at 25 and 80°C, respectively. The hydrodynamic regime plays an important role in the corrosion of steel only in the disodium solution, where corrosion rates were increased at higher rotation speeds of the electrode. The cathodic depolarization effect is more important in the EDTA-Na2 than in the EDTA-Na4 solution, making it more corrosive.


Barashev, A. R., Karelov, S. V., Anisimova, O. S. & Manyachenkov, S. V. (2011). Innovative technology for recycling the negative segments of alkaline batteries using recoverable solvent. Metallurgist, 55(5-6), 381-385.

Binyamin, G. & Heller, A. (1999). Stabilization of wired glucose oxidase anodes rotating at 1000 rpm at 37°C. J. Electrochem. Soc., 146(8), 2965-2967.

Cai, Y. D., Guo, P. C., Liu, D. M., Chen, S. Y. & Liu, J. L. (2010). Comparative study of CO2 corrosion behavior of N80, P110, X52 and 13Cr pipelines in simulated stratum water. Sci. China Technol. Sci., 53(9), 2342-2349.

Capobianco, G., Goatin, C., Moretti, G., Patron, S. & Toniolo, L. (1994). EDTA-hydroxylamine sulfate-Fe2+: An efficient corrosion inhibitor system for an industrial crystallization plant. Corros. Sci., 50(11), 886-897.

Carvalho, D. S., Joia, C. J. B. & Mattos, O. R. (2005). Corrosion rate of iron and iron-chromium alloys in CO2 medium. Corros. Sci., 47(12), 2974-2986.

Flitt, H. J. & Schweinsberg, D. P. (2005). A guide to polarisation curve interpretation: deconstruction of experimental curves typical of the Fe/H2O/H+/O2 corrosion system. Corrosion Science, 47(9), 2125-2156.

Fredd, C. N. & Fogler, H. S. (1998). The influence of chelating agents on the kinetics of calcite dissolution. J. Colloid Int. Sci., 204(1), 187-197.

Frenier, W. W., Fredd, C. N. & Chang, F. (2001). Hydroxyaminocarboxylic acids produce superior formulations for matrix stimulation of carbonates at high temperatures. SPE Annual Technical Conference and Exhibition, New Orleans. SPE-71696-MS.

Frey, D. A. (1981). Case histories of corrosion in industrial boilers. Mater. Performance, 20(2), 49-55.

Gambardella, F., Galán-Sánchez, L. M., Ganzeveld, K. J., Winkelman, J. G. M. & Heeres, H. J. (2006). Reactive NO absorption in aqueous FeII(EDTA) solutions in the presence of denitrifying micro-organisms. Chem. Eng. J., 116: 67-75.

Hiemstra, T. & Van Riemsdijk, W. H. (1991). Physical chemical interpretation of primary charging behaviour of metal hydroxides. Colloids Surf., 59(8), 7-25.

Keddam, M., Mattos, O. R. & Takenouti, H. (1981). Reaction model for iron dissolution studied by electrode impedance. I. Experimental Results and Reaction Model. J. Electrochem. Soc., 128(2), 257-266.

Lin, N. M., Xie, F. Q., Zhou, J., Zhong, T., Wu, X. Q. & Tian, W. J. (2010). Microstructures and wear resistance of chromium coating on P110 steel fabricated by pack cementation. J. Cent. South Univ. Technol., 17(6), 1155- 1162.

Liu, J. & Macdonald, D. D. (2001). The passivity of iron in the presence of ethylenediaminetetraacetic acid. II. The defect and electronic structures of the barrier layer. J. Electroch. Soc., 148(11), B425-B430.

Migahed, M. A. & Nassar, I. F. (2008). Corrosion inhibition of Tubing steel during acidization of oil and gas wells. Electrochim. Acta, 53(6), 2877-2882.

Moreira, R. M., Franco, C. V., Joia, C. J. B., Giordana, S. & Mattos, O. R. (2004). The effects of temperature and hydrodynamics on the CO2 corrosion of 13Cr and 13Cr5Ni2Mo stainless steels in the presence of free acetic acid. Corros. Sci., 46(12), 2987-3003.

Nasr-El-Din, H. A., Al-Othman, A. M., Taylor, K. C. & Al-Ghamdi, A. H. (2004). Surface tension of HCl-based stimulation fluids at high temperatures. J. Petrol. Sci. Eng., 43(1-2), 57-73.

Palmer, J. W. & Boden, P. J. (1992). Corrosion of steel in EDTA. Br. Corros. J., 27(4), 305-309.

Portier, S., Vuataz, F. D., Nami, P., Sanjuan, B. & Gérard, A. (2009). Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 38(4), 349-359.

Sunda, W. & Huntsman, S. (2003). Effect of pH, light, and temperature on Fe-EDTA chelation and Fe hydrolysis in seawater. Mar. Chem., 84(1-2), 35-47.

Umamathi, T., Selvi, J. A., Kanimozhi, S. A., Rajendran, S. & Amalraj, A. (2008). Effect of Na3PO4 on the corrosion inhibition efficiency of EDTA-Zn2+ system for carbon steel in aqueous solution. Indian J. Chem. Technol., 15(6), 560-565.
How to Cite
Calderón Gutiérrez, J. A., Bonilla, G. F., & Carreño, J. A. (2014). The corrosion process of p-110 steel in stimulation fluids used in the oil industry. CT&F - Ciencia, Tecnología Y Futuro, 5(4), 35-48.


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo