Comparative study of the normal visbreaking process and the thermal fixed-bed process applied on Colombian heavy oils

  • Judith Rocío Santa Jaimes Ecopetrol S.A.
  • Jairo Javier López Gómez TIP Ltda.
Keywords: Thermal cracking, Visbreaking, Delayed coking, Heavy oils, Reactors, Fixed-bed, Distillates

Abstract

The rise in heavy oil reserves, the scarceness of light oils, the demand for clean products and the increase in residual material or bottoms make it necessary to implement or adapt technologies to process heavy oils efficiently.  To this end, the modification of the current visbreaking system has been proposed, consisting of adapting a fixed bed inside the reactor in order to study possible modifications in the different thermal processes to increment  and improve performance with the purpose of obtaining more valuable products from heavy oils.

This research was conducted through testing at the pilot plant level in the visbreaking unit of Ecopetrol S.A. Instituto Colombiano del Petróleo (ICP), which provides the possibility of comparing the normal visbreaking process to the fixed-bed visbreaking process as a thermal process.  Both processes are carried out in comparison to the increase in the performance of middle distillates and the quality properties of the products obtained.  The comparison was completed under the same conditions of flow, flow direction (ascending), pressure, temperature and oil type.

The results revealed that the fixed-bed visbreaking process managed to convert more heavy fractions into distillates (4 to 7%) compared to the normal visbreaking process.

References

ASTM D1250 - 08. Standard Guide for Use of the Petroleum Measurement Tables. Annual Book of ASTM Standards, Vol. 05.01. ASTM International, West Conshohocken, PA, 2013.

ASTM D3279 - 12. Standard Test Method for n-Heptane Insolubles. Annual Book of ASTM Standards, Vol. 04.03. ASTM International, West Conshohocken, PA, 2012.

ASTM D4294 - 10. Standard Test Method for Sulfur in and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry. Annual Book of ASTM Standards, Vol. 05.02. ASTM International, West Conshohocken, PA, 2010.

ASTM D445 - 14e2. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). Annual Book of ASTM Standards, Vol. 05.01. ASTM International, West Conshohocken, PA, 2014.

ASTM D4530 - 11. Standard Test Method for Determination of Carbon Residue (Micro Method). Annual Book of ASTM Standards, Vol. 05.02. ASTM International, West Conshohocken, PA, 2011.

ASTM D5002 - 13. Standard Test Method for Density and Relative Density of Crude Oils by Digital Density Analyzer. Annual Book of ASTM Standards, Vol. 05.02. ASTM International, West Conshohocken, PA, 2013.

ASTM D5184 - 12. Standard Test Methods for Determination of Aluminum and Silicon in Fuel Oils by Ashing, Fusion, Inductively Coupled Plasma Atomic Emission Spectrometry, and Atomic Absorption Spectrometry. Annual Book of ASTM Standards, Vol. 05.02. ASTM International, West Conshohocken, PA, 2012.

ASTM D7060 - 12. Standard Test Method for Determination of the Maximum Flocculation Ratio and Peptizing Power in Residual and Heavy Fuel Oils (Optical Detection Method). Annual Book of ASTM Standards, Vol. 05.04. ASTM International, West Conshohocken, PA, 2012.

ASTM E11 - 13. Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. Annual Book of ASTM Standards, Vol. 14.02. ASTM International, West Conshohocken, PA, 2013.

Bartholic, D. B. & Watchung, N. (1979). USA Patent 4.243.514. Preparation of FCC charge from residual fractions.

Phillips, C. R., Haidar, N. I. & Poon, Y. C. (1985). Kinetic models for the thermal cracking of Athabasca bitumen. The effect of the sand matrix. Fuel, 64(5), 678-691.
https://doi.org/10.1016/0016-2361(85)90055-9

Colyar, J. J. (2010). New upgrading technologies applicable to heavy oil and bitumen. Report, Colyar Consultants, Newtown, USA.

Corredor-Rojas, L. M. & Valero-Alvarado, M. L. (2004). Estudio y análisis del procesamiento a nivel piloto de crudos pesados por conversión térmica. Tesis de Pregrado, Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia, 166pp.

Fogler, S. H. (1979). Elements of chemical engineering reac- tion engineering. New Deli: Prentice-Hall of India.

Froment, G. F. & Bischoff, K. B. (1979). Chemical reactor analysis and design. New York: John Willey & Sons. Inc.

Gary, J. H. & Handwerk, G. (2001). Petroleum refining: Technology and economics. Third Edition. New York: Marcel Dekker, Inc.
https://doi.org/10.1201/9780824745172

Iborra, M., Tejero, J. & Cunill, F. (2013). Reactores multifásicos. Apuntes, Universitad de Barcelona, Barcelona.

Ivanhoe Energy. (2013). HTL Process. [Online]. [Last access: July 2013]. Available at:

Levenspiel, O. (1999). Chemical reaction engineering. New York: John Willey & Sons. Inc.
https://doi.org/10.1021/ie990488g

Pantoja, F. P. (2005). Proceso de viscorreducción. Seminario Proceso de Viscorreducción. Ecopetrol S.A. Barranca- bermeja.

Rodríguez, L. (2014). Procedimiento técnico prueba mérito CLT-FIR-I-036. Procedimiento Técnico. Ecopetrol S.A.-Instituto Colombiano del Petróleo (ICP).

Smith, J. M. (1991). Chemical engineering kinetics. New York: McGraw-Hill, Inc.

SMS 1600. Determination of State of Peptization of Asphaltenes in Heavy Oil Streams. Shell Method Series, 2001.

UOP 389-14. Trace Metals in Organics by ICP-OES. ASTM International, West Conshohocken, PA, 2014.
How to Cite
Santa Jaimes, J. R., & López Gómez, J. J. (2014). Comparative study of the normal visbreaking process and the thermal fixed-bed process applied on Colombian heavy oils. CT&F - Ciencia, Tecnología Y Futuro, 5(5), 75-96. https://doi.org/10.29047/01225383.34

Downloads

Download data is not yet available.
Published
2014-12-15
Section
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic