Relationship between the mud organic matter content and the maximum height of diapiric domes using analog models

  • Carlos Alberto Ríos Reyes Universidad Industrial de Santander.
  • Olivia González Morales Universidad Industrial de Santander.
  • Alfonso Luis Rodríguez Madrid RM GeoConsulting.
  • Germán Yury Ojeda Bueno Corporación Geológica Ares.
Keywords: Mud diapirs, Sedimentary, Analog models, Gas, Organic matter, Geomorphology

Abstract

Mud diapirs are sedimentary structures produced by mud intrusion through a host rock. In this study, analog models of mud diapirism showed that gas generated from decomposition of organic matter contained in diapiric mud plays a fundamental role in the generation of these structures. This study is aimed to test the hypothesis that a relationship exists between the mud organic matter content (TOC) and the maximum height of diapiric domes. Our experiments were performed using sand boxes 20 x 20 x 16 cm in size, using nine mud combinations with TOC values that ranged between 1.6 and 4.3%, repeated 5 times to minimize random errors. Results of this study confirm that a linear relationship of the maximum height (mm) = 12.7xTOC (%) – 18.16 explains the elevations measured. In addition, an inverse linear relationship between TOC and the time at which the domes reached hmax was established. Observation of the morphological changes undergone by domes during their evolution allowed recognition of evolutionary stages that can be compared to the geomorphology of mud domes in nature. The relationships established in this study are useful to generate hypothesis about the organic matter content under active mud diapiric areas. For example, the elevations in the south of Colombia’s Sinú diapiric Belt (Abibe-Las Palomas Anticlinorium) are, on average, clearly higher than those in the northern part of this belt (Turbaco Anticlinorium). This may be the result of a much more organic-rich mud source under the southern Anticlinorium relative to the north. Finally, a warning is made on the risks of constructions above areas where mud diapirism occurs, which can be affected by the collapse of diapiric domes.

References

Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., Feyzullayev, A. A. & Aliyev, C. S. (2014). Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637: 163-177.
https://doi.org/10.1016/j.tecto.2014.10.005

Beauchamp, B. (2004). Natural gas hydrates: Myths, facts and issues. C. R. Geosci., 336, 751-765.
https://doi.org/10.1016/j.crte.2004.04.003

Briceño, L. A. & Vernette, G. (1992). Manifestaciones del diapirismo arcilloso en el margen colombiano del Caribe. Geofís. Colombiana, 1: 21-30.

Brown, K. M. (1990). The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res., 95(B6), 8969-8982.
https://doi.org/10.1029/JB095iB06p08969

Brown, K. M. & Westbrook, G. K. (1988). Mud diapirism and subcretion in the Barbados Ridge accretionary complex: The role of fluids in accretionary processes. Tectonics, 7(3), 613-640.
https://doi.org/10.1029/TC007i003p00613

Carvajal, J. H., Mendivelso, D., Obando, G., Forero, H., Gómez, J. F., Vásquez, L., Cárdenas, R., Castiblanco, C. R., Franco, J. V., Ruge, G., Pinzón, L., Prada, M. A. & Imbachi, O. (2011). Características del 'Volcanismo de Lodo' del Caribe Central Colombiano. Ministerio de Minas y Energía. Informe Servicio Geológico Colom- biano, Bogotá.

Charlou, J. L., Donval, J. P., Zitter, T., Roy, N., Jean-Baptiste, P., Foucher, J. P. & Woodside, J. (2003). Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res. Pt I, 50(8), 941-958.
https://doi.org/10.1016/S0967-0637(03)00093-1

Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S. & Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92: 201-214.
https://doi.org/10.1016/j.jseaes.2013.10.009

Dimitrov, L. I. (2002). Mud volcanoes - the most important pathway for degassing deeply buried sediments. Earth- Sci. Rev., 59: 49-76.

Duque-Caro, H. (1979). Geotectónica y evolución de la región Noroccidental Colombiana. Bol. Geol. Ingeominas, 23(3), 4-37.

Duque-Caro, H. (1984). Estilo estructural, diapirismo y episodios de acrecimiento del terreno Sinú-San Jacinto en el Noroccidente de Colombia. Bol. Geol. Ingeominas, 27(2), 1-29.

Gamberi, F. & Rovere, M. (2010). Mud diapirs, mud vol- canoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Res., 22(4), 452-464.
https://doi.org/10.1111/j.1365-2117.2010.00473.x

Gao, S., House, W. & Chapman, W.G. (2005). NMR/MRI study of clathrate hydrate mechanisms. J. Phys. Chem. B, 109(41), 19090-19093.
https://doi.org/10.1021/jp052071w

González, H. & Londoño, A. (2001). Mapa geológico del departamento de Córdoba. Geología, recursos minerales y amenazas naturales. Escala 1:250.000, Ingeominas.

Guliyiev, I. S. & Feizullayev, A. A. (1997). All about mud volcanoes. Azerbaijan: Publ. House, Nafta Press, Baku.

Hedberg, H. D. (1974). Relation of methane generation to undercompacted shales, shale diapirs and mud volcanoes. AAPG Bull., 58(4), 661-673.
https://doi.org/10.1306/83D91466-16C7-11D7-8645000102C1865D

Hensen, C., Nuzzo, M., Hornibrook, E., Pinheiro, L. M., Bock, B., Magalhães, V. & Bruckmann, W. (2007). Sources of mud volcano fluids in the Gulf of Cadiz: Indications for hydrothermal imprint. Geochim. Cosmochimica Acta, 71(5), 1232-1248.
https://doi.org/10.1016/j.gca.2006.11.022

Hester, K. C. & Brewer, P. G. (2009). Clathrate hydrates in nature. Ann. Rev. Mar. Sci., 1, 303-327.
https://doi.org/10.1146/annurev.marine.010908.163824

Higgins, G. E. & Saunders, J. B. (1974). Mud volcanoes - Their nature and origin, contributions to geology and palaeobiology of Caribbean and adjacent areas. Verh. Naturforsch. Ges. Basel, 84: 101-152.

Hovland, M., Hill, A. & Stokes, D. (1997). The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology, 21(1), 1-15.
https://doi.org/10.1016/S0169-555X(97)00034-2

Jakubov, A. A., Ali-Zade, A. A. & Zeinalov, M. M. (1971). Mud volcanoes of the Azerbaijan SSR: Atlas. Elm-Azer- baijan Acad. Sci. Pub. House, Baku.

Judd, A. G. & Hovland, M. (2007). Seabed fluid flow: The impact on geology, biology, and the marine environment. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511535918

Kobayashi, K., Ashi, J., Boulegue, J., Cambray, H., Chamot- Rooke, N., Fujimoto, H., Furuta, T., Iiyama, J. T., Koi- zumi, T., Mitsuzawa, K., Monma, H., Murayama, M., Naka, J., Nakanishi, M., Ogawa, Y., Otsuka, K., Okada, M., Oshida, A., Shima, N., Soh, W., Takeuchi, A., Wata- nabe, M. & Yamagata, T. (1992). Deep-tow survey in the KAIKO-Nankai cold seepage areas. Earth Planet. Sci. Lett., 109: 347-354.
https://doi.org/10.1016/0012-821X(92)90097-F

Kopf, A. J. (2002). Significance of mud volcanism. Rev. Geophys., 40(2), 1-52.
https://doi.org/10.1029/2000RG000093

Kopf, A. J. (2003). Global methane emission through mud volcanoes and its past and present impact on the Earth's climate. Int. J. Earth Sci., 92(5), 806-816.
https://doi.org/10.1007/s00531-003-0341-z

Kopf, A., Robertson, A. H. F. & Volkmann, N. (2000). Origin of mud breccia from the Mediterranean Ridge accretionary complex based on evidence of the maturity of organic matter and related petrographic and regional tectonic evidence. Mar. Geol., 166(1-4), 65-82.
https://doi.org/10.1016/S0025-3227(00)00009-8

Krastel, S., Spiess, V., Ivanov, M., Weinrebe, W., Bohrmann, G., Shashkin, P. & Heidersdorf, F. (2003). Acoustic inves- tigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Mar. Lett., 23(3), 230-238.
https://doi.org/10.1007/s00367-003-0143-0

León, R., Somoza, L., Medialdea, T., González, F. J., Díaz- del-Río, V., Fernández-Puga, M. C., Maestro, A. & Mata, M. P. (2007). Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates. Geo-Mar. Lett. 27(2), 237-247.
https://doi.org/10.1007/s00367-007-0074-2

Lundgaard, L. & Mollerup, J. (1992). Calculation of phase diagrams of gas-hydrates. Fluid Phase Equilibr., 76: 141-149.
https://doi.org/10.1016/0378-3812(92)85083-K

Mantilla-Pimiento, A. M., Jentzsch, G., Kley, J. & Alfonso-Pava, C. (2009). Configuration of the Colombian Caribbean Margin: Constraints from 2D seismic reflection data and potential fields interpretation. In: Lallemand, S. & Funiciello. F. (eds.). Subduction zone geodynamics. Berlin: Springer-Verlag Berlin Heidelberg. 247-272.
https://doi.org/10.1007/978-3-540-87974-9_13

Martin, J. B., Kastner, M., Henry, P., Le Pichon, X. & Lallement, S. (1996). Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. J. Geophys. Res., 101(B9), 20325-20345.
https://doi.org/10.1029/96JB00140

Michon, L. & Merle, O. (2003). Mode of lithospheric extension: Conceptual models from analogue modeling. Tectonics, 22(4), 1-16.
https://doi.org/10.1029/2002TC001435

Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167(1-2), 29-42.
https://doi.org/10.1016/S0025-3227(00)00022-0

Morita, S., Ashi, J., Aoike, K. & Kuramoto, S. (2004). Evolution of Kumano basin and sources of clastic ejecta and pore fluid in Kumano mud volcanoes, Eastern Nankai Trough. International Symposium on Methane Hydrates and Fluid Flow in Upper Accretionary Prisms, Kyoto University, Kyoto.

Nishio, Y., Ijiri, A., Toki, T., Morono, Y., Tanimizu, M., Nagaishi, K. & Inagaki, F. (2015). Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge. Earth Planet. Sci. Lett., 414: 144-155.
https://doi.org/10.1016/j.epsl.2015.01.018

O'Brien, G. D. (1968). Survey of diapirs and diapirism. In: Braustein, J. & O'Brien, G.D., (eds). Diapirism and dia- pirs. AAPG Mem. 8, 1-9.

Ojeda, G. Y., Hernández, R. & Olaya, I. D. (2004). Mud volcanoes on the seafloor of the Colombian Caribbean Sea: Undesirable lumps or exploration tools?. 2nd Technical Convention, ACGGP, Bogota, Colombia.

Ordoñez, C. I. (2008). Controle neotectónico do diapirismo de lama na regiao de Cartagena, Colombia. M. Sc. Thesis, Universidade Federal Fluminense, Brazil, 224pp.

Palomino, D., López-González, N., Vázquez J. T., Fernández- Salas, L. M., Rueda, J. L., Sánchez-Leal, R. & Díaz- del-Río, V. (In Press). Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector). Mar. Geol.

Pérez-Belzuz, F., Alonso, B. & Ercilla, G. (1997). History of mud diapirism and trigger mechanisms in the Western Alboran Sea. Tectonophysics, 282(1-4), 399-422.
https://doi.org/10.1016/S0040-1951(97)00226-6

Perez-Garcia, C. (2012). A multidisciplinary subsurface analysis of mud volcanoes and salt diapirs in European Seas. Ph. D. Thesis, Faculty of Science and Technology, University of Tromsø, Norway. 33pp.

Reed, D. L., Silver, E. A., Tagudin, J. E., Shipley, T. H. & Vrolijk, P. (1990). Relations between mud volcanoes, thrust deformation, slope sedimentation and gas hydrates, offshore north Panama. Mar. Petrol. Geol., 7(1), 44-54.
https://doi.org/10.1016/0264-8172(90)90055-L

Robertson, A. (1996). Mud volcanism on the Mediterranean Ridge: Initial results of ocean drilling program Leg 160. Geology, 24(3), 239-242.
https://doi.org/10.1130/0091-7613(1996)024<0239:MVOTMR>2.3.CO;2

Robertson, A. & Kopft, A. (1998). Tectonic setting and processes of mud volcanism on the Mediterranean, Ridge accretionary complex: Evidence from Leg 160. Procedings of Ocean Drilling Program, Scientific Results, 160.
https://doi.org/10.2973/odp.proc.sr.160.062.1998

Schellart, W. P. (2002). Analogue modelling of large-scale tectonic processes: An introduction. J. Virtual Explorer, 7: 1-6.
https://doi.org/10.3809/jvirtex.2002.00045

Sautkin, A., Talukder, A. R., Comas, M. C., Soto, J. I. & Alekseev, A. (2003). Mud volcanoes in the Alboran Sea: Evidence from micropaleontological and geophysical data. Mar. Geol., 195(1-4), 237-261.
https://doi.org/10.1016/S0025-3227(02)00691-6

Servio, P., Lagers, F., Peters, C. & Englezos, P. (1999). Gas hydrate phase equilibrium in the system methane-carbon dioxide-neohexane and water. Fluid Phase Equilibr., 158-160: 795-800.
https://doi.org/10.1016/S0378-3812(99)00084-9

Shipley, T. H., Stoffa, P. L. & Dean, D. F. (1990). Underthrust sediments, fluid migration paths, and mud volcanoes associated with the accretionary wedge off Costa Rica: Middle America Trench. J. Geophys. Res., 95(B6), 8743- 8752.
https://doi.org/10.1029/JB095iB06p08743

Sloan, E. D. Jr, (2003). Fundamental principles and applications of natural gas hydrates. Nature, 426: 353-363.
https://doi.org/10.1038/nature02135

Somoza, L., Díaz-del-Río, V., León, R., Ivanov, M., Fernández-Puga, M. C., Gardner, J. M., Hernández- Molina, F. J., Pinheiro, L. M., Rodero, J., Lobato, A., Maestro, A., Vázquez, J. T., Medialdea, T. & Fernández- Salas, L. M. (2003). Seabed morphology and hydrocarbon seepage in the Gulf of Cádiz mud volcano area: Acoustic imagery, multibeam and ultra-high resolution seismic data. Mar. Geol., 195(1-4), 153-176.
https://doi.org/10.1016/S0025-3227(02)00686-2

Sumner, R. H. & Westbrook, G. K. (2001). Mud diapirism in front of the Barbados accretionary wedge: The influence of fracture zones and North America-South America plate motions. Mar. Petrol. Geol., 18(5), 591-613.
https://doi.org/10.1016/S0264-8172(01)00010-1

Talukder, A. R., Bialas, J., Klaeschen, D., Buerk, D., Brueck- mann, W., Reston, T. & Breitzke, M. (2007). High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin. Mar. Geol., 241(1-4), 33-43.
https://doi.org/10.1016/j.margeo.2007.03.002

Uchida, T., Ohmura, R., Ikeda, I. Y., Nagao, J., Takeya, S. & Hori, A. (2006). Phase equilibrium measurements and crystallographic analyses on structure-H type gas hydrate formed from the CH4-CO2-neohexane-water system. J. Phys. Chem. B, 110(10), 4583-4588.
https://doi.org/10.1021/jp056503e

Vernette, G. (1986). Le Diapirisme argileux et ses consequences sur les caracteres morphologiques et sédimentaires de la Marge Colombienne des Caraibes. Bull. l'Inst. Géol. Bassin d'Aquitaine, 40: 35-51.

Vernette, G., Mauffret, A., Bobier, C., Briceno, L. & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2-4), 335-349.
https://doi.org/10.1016/0040-1951(92)90118-P

Yusifov, M. & Rabinowitz, P. D. (2004). Classification of mud volcanoes in the South Caspian Basin, offshore Azerbaijan. Mar. Petrol. Geol., 21(8), 965-975.
https://doi.org/10.1016/j.marpetgeo.2004.06.002
How to Cite
Ríos Reyes, C. A., González Morales, O., Rodríguez Madrid, A. L., & Ojeda Bueno, G. Y. (2015). Relationship between the mud organic matter content and the maximum height of diapiric domes using analog models. CT&F - Ciencia, Tecnología Y Futuro, 6(2), 17-32. https://doi.org/10.29047/01225383.17

Downloads

Download data is not yet available.
Published
2015-12-15
Section
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic