Ethyl acetate oxidation over MnOx-CoOx. relationship between oxygen and catalytic activity

  • Sonia Moreno Guáqueta Universidad Nacional de Colombia.
  • Rafael Molina Gallego Universidad Nacional de Colombia.
  • María Haidy Castaño Robayo Universidad Nacional de Colombia.
Keywords: Hydrotalcite, Mixed oxide, Mobility, Oxygen storage capacity

Abstract

Catalytic oxidation is an alternative for the transformation of volatile organic compounds. Mn and Co catalysts are the most active in oxidation reactions because of their redox properties and oxygen mobility. Co-precipitation is one of the methods most used to prepare metal oxides. In this regard and in order to understand the relationship between oxygen species and the activity of the catalysts, in this work mixed oxides of Co-Mn-Mg-Al were prepared by the co-precipitation method. The catalysts were characterized by XRD, surface area, temperature-programmed desorption of oxygen, oxygen storage capacity, 18O/16O isotopic exchange; and the catalytic activity was evaluated in the oxidation of ethyl acetate. The results indicate that manganese-containing oxides have surface adsorbed oxygen and a greater amount of oxygen susceptible to redox cycles while oxides containing cobalt show high oxygen mobility. In the oxidation of ethyl acetate, the most labile oxygens undergo redox cycles and surface adsorbed oxygens are the species involved.

References

Aguilera, D. A., Perez, A., Molina, R. & Moreno, S. (2011). Cu- Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl. Catal. B: Environ., 104(1-2), 144-150.
https://doi.org/10.1016/j.apcatb.2011.02.019

Arnone, S., Busca, G., Lisi, L., Milella, F., Russo, G. & Turco, M. (1998). Catalytic combustion of methane over LaMnO3 perovskite supported on La2O3 stabilized alumina. A comparative study with Mn3O4, Mn3O4-Al2O3 spinel oxides. Symposium (International) on Combustion, 27(2), 2293-2299.
https://doi.org/10.1016/S0082-0784(98)80079-9

Avgouropoulos, G., Ioannides, T. & Matralis, H. (2005). Influence of the preparation method on the performance of CuO-CeO catalysts for the selective oxidation of CO. Appl. Catal. B: Environ., 56(1-2), 87-93.
https://doi.org/10.1016/j.apcatb.2004.07.017

Bordeneuve, H., Guillemet-Fritsch, S., Rousset, A., Schuurman, S. & Poulain, V. (2009). Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3-xCoxO4 sintered classically and by Spark Plasma Sintering (SPS). J. Solid State Chem., 182(2), 396-401.
https://doi.org/10.1016/j.jssc.2008.11.004

Castaño, M. H., Molina, R. & Moreno, S. (2015). Cooperative effect of the Co-Mn mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method. Appl. Catal. A, 492: 48-59.
https://doi.org/10.1016/j.apcata.2014.12.009

Cavani, F., Trifirò, F. & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 11(2), 173-301.
https://doi.org/10.1016/0920-5861(91)80068-K

Christou, S. Y., García-Rodríguez, S., Fierro, J. L. G. & Efstathiou, A. M. (2012). Deactivation of Pd/Ce0.5Zr0.5O2 model three-way catalyst by P, Ca and Zn deposition. Appl. Catal. B: Envirn., 111-112: 233-245.
https://doi.org/10.1016/j.apcatb.2011.10.004

Fierro, J. L. G. (2006). Metal oxides: Chemistry and applications. New York: CRC Press.
https://doi.org/10.1201/9781420028126

Garetto, T., Legorburu, I. & Montes, M. (2008). Eliminación de emisiones atmosféricas de COVs por catálisis y adsorción. Madrid: CYTED.

Jang, Y. I., Wang, H. & Chiang, Y. M. (1998). Room- temperature synthesis of monodisperse mixed spinel (CoxMn1-x)3O4 powder by a coprecipitation method. J. Mater. Chem., 8(12), 2761-2764.
https://doi.org/10.1039/a806653a

Khan, F. I. & Ghoshal, A. (2000). Removal of volatile organic compounds from polluted air. J. Losss Prevent. Proc., 13(6), 527-545.
https://doi.org/10.1016/S0950-4230(00)00007-3

Koppmann, R. (2010). Chemistry of volatile organic compounds in the atmosphere. In: Timmis, K. (Ed.), Handbook of hydrocarbon and lipid microbiology. Berlín: Springer Berlin Heidelberg. 267-277.
https://doi.org/10.1007/978-3-540-77587-4_18

Kovanda, F. & Jirátová, K. (2011). Supported layered double hydroxide-related mixed oxides and their application in the total oxidation of volatile organic compounds. Appl. Clay Sci., 53(2), 305-316.
https://doi.org/10.1016/j.clay.2010.12.030

Lamonier, J. F., Boutoundou, A. B., Gennequin, C., Pérez- Zurita, M., Siffert, S. & Aboukais, A. (2007). Catalytic removal of toluene in air over Co-Mn-Al nano-oxides synthesized by hydrotalcite route. Catal. Lett., 118(3), 165-172.
https://doi.org/10.1007/s10562-007-9196-4

Li, Q., Meng, M., Xian, H., Tsubaki, N., Li, X., Xie, Y., Hu, T. & Zhang, J. (2010). Hydrotalcite-derived MnxMg3-x AlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx semoval. Environ. Sci. Technol., 44(12), 4747-4752.
https://doi.org/10.1021/es9033638

Liotta, L. F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Marcì, G., Retailleau, L., Giroir-Fendler, A. (2008). Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal., A, 347(1), 81-88.
https://doi.org/10.1016/j.apcata.2008.05.038

Liotta, L. F., Wu, H., Pantaleo, G. & Venezia, A. M. (2013). Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol., 3(12), 3085-3102.
https://doi.org/10.1039/c3cy00193h

Mars, P. & van Krevelen, D. W. (1954). Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci., 3(Supplement 1), 41-59.
https://doi.org/10.1016/S0009-2509(54)80005-4

Merino, N. A., Barbero, B. P., Grange, P. & Cadús, L. E. (2005). La1-xCaxCoO3 perovskite-type oxides: Preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J. Catal., 231(1), 232-244.
https://doi.org/10.1016/j.jcat.2005.01.003

Mo, L., Fei, J., Huang, C. & Zheng, X. (2003). Reforming of methane with oxygen and carbon dioxide to produce syngas over a novel Pt/CoAl2O4/Al2O3 catalyst. J. Mol. Catal. A: Chem., 193(1-2), 177-184.
https://doi.org/10.1016/S1381-1169(02)00453-3

Morales, M. R., Barbero, B. P. & Cadús, L. E. (2007). Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl. Catal. B: Environ. 74(1-2), 1-10.
https://doi.org/10.1016/j.apcatb.2007.01.008

Moro-oka, Y., Ueda, W. & Lee, K. H. (2003). The role of bulk oxide ion in the catalytic oxidation reaction over metal oxide catalyst. J. Mol. Catal. A: Chem., 199(1-2), 139-148.
https://doi.org/10.1016/S1381-1169(03)00030-X

Muñoz, M., Moreno, S. & Molina, R. (2012). Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. Int. J. Hydrogen Energy, 37(24), 18827-18842.
https://doi.org/10.1016/j.ijhydene.2012.09.132

Nováková, J. (1971). Isotopic exchange of oxygen 18O between the gaseous phase and oxide catalysts. Cat. Rev., 4(1), 77-113.
https://doi.org/10.1080/01614947108075486

Oyama, S. T. (1996). Factors affecting selectivity in catalytic partial oxidation and combustion reactions. In: Warren, B. K. & Oyama, S. T. (Eds). Heterogeneous hydrocarbon oxidation. Washington: American Chemical Society. Vol. 638, Chapter 1, 2-19.
https://doi.org/10.1021/bk-1996-0638.ch001

Papaefthimiou, P., Ioannides, T. & Verykios, X. E. (1997). Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Appl. Catal. B: Environ., 13(3-4), 175-184.
https://doi.org/10.1016/S0926-3373(96)00103-8

Royer, S., Duprez, D. & Kaliaguine, S. (2005). Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3. J. Catal., 234(2), 364-375.
https://doi.org/10.1016/j.jcat.2004.11.041

Santos, V. P., Pereira, M. F. R., Órfão, J. J. M. & Figueiredo, J. L. (2009). Synthesis and characterization of manganese oxide catalysts for the total oxidation of ethyl acetate. Top. Catal., 52(5), 470-481.
https://doi.org/10.1007/s11244-009-9187-3

Schwarz, J. A., Contescu, C. & Contescu, A. (1995). Methods for preparation of catalytic materials. Chem. Rev., 95(3), 477-510.
https://doi.org/10.1021/cr00035a002

Spivey, J. J. (1987). Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res., 26(11), 2165-2180.
https://doi.org/10.1021/ie00071a001

Tsai, Y. T., Mo, X., Campos, A., Goodwin Jr, J. G. & Spivey, J. J. (2011). Hydrotalcite supported Co catalysts for CO hydrogenation. Appl. Catal. A, 396(1-2), 91-100.
https://doi.org/10.1016/j.apcata.2011.01.043

Tsyganok, A. & Sayari, A. (2006). Incorporation of transition metals into Mg-Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator. J. Solid State Chem., 179(6), 1830- 1841.
https://doi.org/10.1016/j.jssc.2006.03.029

Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catal. Today, 41(1-3), 53-71.
https://doi.org/10.1016/S0920-5861(98)00038-8

Vedrine, J. C., Coudurier, G. & Millet, J. M. M. (1997). Molecular design of active sites in partial oxidation reactions on metallic oxides. Catal. Today, 33(1-3), 3-13.
https://doi.org/10.1016/S0920-5861(96)00103-4

Velu, S., Shah, N., Jyothi, T. M. & Sivasanker, S. (1999). Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides. Micropor. Mesopor. Mater., 33(1-3), 61-75.
https://doi.org/10.1016/S1387-1811(99)00123-7

Wang, J., Shen, M., Wang, J., Gao, J., Ma, J. & Liu, S. (2011). CeO2-CoOx mixed oxides: Structural characteristics and dynamic storage/release capacity. Catal. Today, 175(1), 65-71.
https://doi.org/10.1016/j.cattod.2011.03.004

Xu, Z. P., Zhang, J., Adebajo, M. O., Zhang, H. & Zhou, C. (2011). Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci., 53(2), 139-150.
https://doi.org/10.1016/j.clay.2011.02.007

Xue, L., Zhang, C., He, H. & Teraoka, Y. (2007). Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B: Environ., 75(3-4), 167-174.
https://doi.org/10.1016/j.apcatb.2007.04.013

Yamazoe, N. & Teraoka, Y. (1990). Oxidation catalysis of perovskites- relationships to bulk structure and composition (valency, defect, etc.). Catal. Today, 8(2), 175-199.
https://doi.org/10.1016/0920-5861(90)87017-W

Zhang, J., Weng, X., Wu, Z., Liu, Y. & Wang, H. (2012). Facile synthesis of highly active LaCoO3/MgO composite perovskite via simultaneous co-precipitation in supercritical water. Appl. Catal. B: Environ., 126:, 231-238.
https://doi.org/10.1016/j.apcatb.2012.07.020

Zhao, M., Shen, M. & Wang, J. (2007). Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J. Catal., 248(2), 258-267.
https://doi.org/10.1016/j.jcat.2007.03.005

Zhu, L., Lu, G., Wang, Y., Guo, Y. & Guo, Y. (2010). Effects of preparation methods on the catalytic performance of LaMn Mg O perovskite for methane combustion. Chin. J. Catal., 31(8), 1006-1012.
https://doi.org/10.1016/S1872-2067(10)60101-5
How to Cite
Moreno Guáqueta, S., Molina Gallego, R., & Castaño Robayo, M. H. (2015). Ethyl acetate oxidation over MnOx-CoOx. relationship between oxygen and catalytic activity. CT&F - Ciencia, Tecnología Y Futuro, 6(2), 45-56. https://doi.org/10.29047/01225383.19

Downloads

Download data is not yet available.
Published
2015-12-15
Section
Scientific and Technological Research Articles

More on this topic