Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes

  • Luz Marina Flórez Pardo Universidad Autónoma de Occidente.
  • Angela Sofía Parra Paz Universidad del Valle.
  • Jorge Enrique López Galán Universidad del Valle.
  • Jersson Ivan Figueroa Oviedo Universidad del Valle.
Keywords: Enzymatic delignification, Mediators, Laccase, Pleurotus ostreatus, Lignoperoxidase, Ultrasound pretreatment, Tops and leaves

Abstract

Industrial residues are resources that generate regional energy security but they have not been sufficiently valued. In southern Colombia, the sugar cane sector produces approximately 9´000 000 T/year of residues, mostly represented by tops and leaves. Delignification is a critical step in the process of obtaining ethanol from these residues. The removal of lignin using extracellular enzyme extracts and mediators has not been widely studied. Therefore, a methodology was developed to extract, a cocktail of enzymes consisting of laccase, manganese peroxidase (MnP) and lignoperoxidase (LiP) from Pleurotus ostreatus, which was cultivated by solid substrate fermentation. The extracts with two mediators: 1) ABTS: 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulfonic-acid and 2) vanillin, were tested on two different types of residues: untreated residues and pretreated residues with ultrasound. It was found that the crude enzyme extract contained laccase (0.432 U/mL), LiP (0.116 U/mL) and MnP (0.025 U/mL) activity. Additionally, the results confirmed that this extract was capable of removing 52.7% of lignin from ultrasound pretreated sugar cane residues and ABTS as the laccase mediator. It is important to highlight that the results obtained were very promising mainly if a more concentrated extracellular extract can be used.

References

Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev. Biotechnol., 24(1), 1-58.
https://doi.org/10.1080/07388550490465817

Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250.
https://doi.org/10.1016/j.enzmictec.2013.02.001

Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6- sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827.
https://doi.org/10.1007/BF00172202

Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632.
https://doi.org/10.1128/AEM.63.12.4627-4632.1997

Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784.
https://doi.org/10.1128/AEM.71.4.1775-1784.2005

Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971.
https://doi.org/10.1021/es062328j

Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable eco- friendly processes. Biotechnol. Adv., 28(6), 694-705.
https://doi.org/10.1016/j.biotechadv.2010.05.002

Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from: .

Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42.
https://doi.org/10.1016/j.jbiotec.2009.06.020

Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259-2264.
https://doi.org/10.1016/j.biortech.2008.09.062

Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons.

Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155.
https://doi.org/10.1016/S0960-8524(01)00082-7

Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115.
https://doi.org/10.1016/j.soilbio.2012.07.007

Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803.
https://doi.org/10.1016/j.biortech.2010.10.020

Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427.
https://doi.org/10.1016/0003-2697(72)90094-2

Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790.
https://doi.org/10.1007/s00253-008-1753-2

Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739.
https://doi.org/10.1016/j.biortech.2012.03.058

Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542.
https://doi.org/10.1007/s00253-014-5810-8

Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433.
https://doi.org/10.1016/j.enzmictec.2009.02.008

Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
https://doi.org/10.1016/S0021-9258(19)52451-6

Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041.
https://doi.org/10.1016/j.chembiol.2010.07.010

Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535.
https://doi.org/10.1134/S0003683807050055

Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrial- scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173.
https://doi.org/10.1016/j.biortech.2012.12.030

Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589.
https://doi.org/10.1016/j.ijbiomac.2014.06.019

Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903.
https://doi.org/10.1016/j.biotechadv.2012.01.018

Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439.
https://doi.org/10.1007/s00253-005-0004-z

Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462.
https://doi.org/10.1016/S0032-9592(03)00025-6

Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279.
https://doi.org/10.1016/j.indcrop.2011.07.010

Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219.
https://doi.org/10.1016/j.bej.2004.09.013

Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. Golden, CO, 18 pp.

Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619. Golden, CO, 12 pp.

Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300.
https://doi.org/10.1016/j.carres.2003.10.027

Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93.
https://doi.org/10.1016/S1350-4177(01)00106-7

Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101.
https://doi.org/10.1016/j.carbpol.2014.07.052

TAPPI. (1999). Technical Association of the Pulp and Paper Industry. Kappa number of pulp. T 236 om-99. Canada, 4p.

Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non- starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597.
https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Velmurugan, R. & Muthukumar, K. (2012). Ultrasound- assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299.
https://doi.org/10.1016/j.biortech.2012.01.168

Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31.
https://doi.org/10.1166/jbmb.2009.1002

Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley's alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523.
https://doi.org/10.1007/s11814-008-0087-1
How to Cite
Flórez Pardo, L. M., Parra Paz, A. S., López Galán, J. E., & Figueroa Oviedo, J. I. (2015). Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes. CT&F - Ciencia, Tecnología Y Futuro, 6(2), 81-92. https://doi.org/10.29047/01225383.22

Downloads

Download data is not yet available.
Published
2015-12-15
Section
Scientific and Technological Research Articles
Crossref Cited-by logo