Preliminar concept of a reaction system for alkylation of isobutane on a solid catalyst

  • Hernando Salgado Ecopetrol S.A.
Keywords: Process Design, Solid Acid, Structured Catalyst, Refining Processes

Abstract

In oil refineries alkylation of isobutane with olefins, especially buthylenes, is carried out to produce alkylate, a high-octane component used in the preparation of premium gasolines. Alkylate production is mainly based on processes where the catalyst is a strong liquid acid, such as hydrofluoric or sulfuric acid, which might have potential impacts on process safety and environment.  Therefore, a solid catalyst would be ideal to avoid the use of highly toxic and corrosive liquid acids, as well as to facilitate the separation steps, since the formation of strong hydrocarbon-acid emulsions is avoided.

Based on the state-of-the-art, simulations, and the application of a structured methodology for selecting reaction systems, in this study, a reaction system concept for alkylation of isobutane using a solid catalyst has been designed. The proposed reaction set up considers a combination of a structured catalyst in a staged CSTR-like configuration which simplifies the process, while maintaining selectivity to alkylate and product octane when compared to conventional alkylation processes. According to the literature consulted, zeolite b was found as the best alternative for an active phase catalyst that can replace liquid acids.

References

Akpabio, E. J. & Neeka, J. B. (2013). Review of petroleum refinery acid catalyzed alkylation processes: a message to Nigerian refineries. Petroleum Tech. Develop. J., 3 (1), 84-97.

Albright, L. F. (2009). Present and future of alkylation processes in refineries. Ind. Eng. Chem. Res., 48: 1409-1413.
https://doi.org/10.1021/ie801495p

Bacha, J. et al. (2007). Diesel Fuels Technical Review. San Ramon, USA: Chevron Products Co. van Broekhoven, E. H., Hendrikus, M., Klaver, G. & Nieman, J. (2012). Alkylation process using a catalyst comprising rare earth containing zeolites and a hydrogenation metal. US Patent No. 8,163,969-B2.

Calis, H. P. (1995). Development of dustproof, low pressure drop reactor with structured catalyst packings: the bead string reactor and the zeolite-covered screen reactor. Ph. D. Thesis, Technische Universiteit Delft, the Netherlands.

Calis, H. P., Takács, K., Gerritsen, A. W. & van den Bleek, C. M. (1998). Bead-String Reactor in: Cybulski, A. & Moulijn, J. A. Structured catalysts and reactors. New York: Marcel Dekker.

Corma, A., Martinez, A. & Martinez, C. (1994). Isobutane/2- butene alkylation on ultrastable Y-zeolites: Influence of zeolite unit cell size. J. of Cat., 146: 185-192.
https://doi.org/10.1016/0021-9517(94)90021-3

Della Costa, B. O. & Querini, C. A. (2010). Isobutane alkylation with solid catalysts based on beta zeolite. Ap. Cat. A: Gen., 385: 144-152.
https://doi.org/10.1016/j.apcata.2010.07.007

Diaz-Mendoza, F. A., Pernett-Bolano, L. & Cardona-Martinez, N. (1998). Effect of catalyst deactivation on the acid properties of zeolites used for isobutane/butene alkylation. Thermochim. Acta, 312: 47-61.
https://doi.org/10.1016/S0040-6031(97)00439-5

Edvinsson-Albers, R. K., Houterman, M. J. J., Vergunst, T., Grolman, E. & Moulijn, J. A. (1998). Novel Monolithic Stirred Reactor. AIChE J., 44 (11): 2459-2464.
https://doi.org/10.1002/aic.690441113

Feller, A. (2003). Reaction mechanism and deactivation pathways in zeolite catalyzed isobutane/2-butene alkylation. Ph. D. Thesis, Technischen Universität München, Germany.
https://doi.org/10.1016/S0021-9517(03)00251-3

Feller, A., Guzman, A., Zuazo, I. & Lercher, J. A. (2004). On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J. of Cat. 224:80-93.
https://doi.org/10.1016/j.jcat.2004.02.019

Fogler, H. C. (2004). Elements of Chemical Reaction Engineering, 3rd ed. Upper Saddle River, USA: Prentice Hall.

Hommeltoft, S. I., Ekelund, O. & Zavilla, J. (1997). Role of ester intermediates isobutane alkylation and its consequence for the choice of catalyst system. Ind. Eng. Chem. Res., 36: 3491-3497.
https://doi.org/10.1021/ie970028s

Hommeltoft, S. I. (2001). Isobutane alkylation: Recent developments and future perspectives. Appl. Cat. A: General, 221: 421-428.
https://doi.org/10.1016/S0926-860X(01)00817-1

De Jong, K. P. et al. (1996). Paraffin alkylation using zeolite catalysts in a slurry reactor: Chemical engineering principles to extend catalyst life-time. Chem. Eng. Sci., 51: 2053-2060.
https://doi.org/10.1016/0009-2509(96)00062-0

Krishna, R. S. & Sie, T. (1994). Strategies for multiphase reactor selection. Chem. Eng. Sci., 49: 4029-4065.
https://doi.org/10.1016/S0009-2509(05)80005-3

Matlack, A. S. (2010). Introduction to Green Chemistry, 2nd ed. Boca Raton, USA: CRC.
https://doi.org/10.1201/9781439882115

Meyers, R. A. (2004). Handbook of Petroleum Refining Processes, 3rd ed. New York, USA: McGraw Hill.
https://doi.org/10.1016/S1351-4180(04)00661-0

Mukherjee, M., Nehlsen, J., Sunderesan, S., Susiu, G. D. & Dixon, J. (2006). Scale-up strategy applied to solid-acid alkylation process. Oil & Gas J., 104 (26) 48-54.

Newsam, J.M., Treacy, M.M.J., Koetsier, W.T. & de Gruyter, C.B. (1988). Structural characterization of zeolite beta. Proc. R. Soc. Lond. A, 420: 375-405.
https://doi.org/10.1098/rspa.1988.0131

Nowak, F. M., Himes, J. F. & Mehlberg, R. L. (2003). Advances in hydrofluoric (HF) acid catalyzed alkylation. NPRA Annual Meeting, San Antonio, USA.

Querini, C. A. (2000). Isobutane/butene alkylation: regeneration of solid acid catalysts. Cat. Today, 62: 135-143.
https://doi.org/10.1016/S0920-5861(00)00415-6

Rao, P. & Vatcha, S. R. (1996). Solid-acid alkylation process development is at crucial stage. Oil & Gas J., 94 (37) 56-61.

Shanjiao, K., Yanjun, G., Tao, D., Ying, Z. & Yanying, Z. (2007). Preparation and characterization of zeolite beta with low SiO2/Al2O3 ratio. Petroleum Sci., 4 (1) 70-74.
https://doi.org/10.1007/BF03186577

Simpson, M. F., Wei, J. & Sundaresan, S. (1996). Kinetic analysis of isobutane/butene alkylation over ultrastable H-Y zeolite. Ind. Chem. Eng. Res., 35: 3861-3873.
https://doi.org/10.1021/ie960172y

Tang, B., Dai, W., Sun, X., Guan, N., Li, L. & Hunger, M. (2014). A procedure for the preparation on Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chem., 16: 2281-2291.
https://doi.org/10.1039/C3GC42534G

Taylor, R. J. & Sherwood Jr., D. E. (1997). Effects of process parameters on isobutane/2-butene alkylation using a solid acid catalyst. Appl. Cat. A: General, 155: 195-215.
https://doi.org/10.1016/S0926-860X(96)00397-3

Yoo, K. & Smirniotis, P. G. (2002). The influence of Si/Al ratios of synthesized zeolites for the alkylation of isobutane with 2-butene. Appl. Cat. A: General, 227: 171-179.
https://doi.org/10.1016/S0926-860X(01)00931-0

Zuazo, I. (2004). Deactivation routes in zeolite catalyzed isobutane/2-butene alkylation and regeneration procedures. Ph. D. Thesis, Technischen Universität München, Germany.
How to Cite
Salgado, H. (2016). Preliminar concept of a reaction system for alkylation of isobutane on a solid catalyst. CT&F - Ciencia, Tecnología Y Futuro, 6(3), 91-104. https://doi.org/10.29047/01225383.11

Downloads

Download data is not yet available.
Published
2016-06-15
Section
Scientific and Technological Research Articles

More on this topic