Prediction of the FFC feedstocks crackability

  • Gustavo Navas Guzmán Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Francy L. Martínez Cruz Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Juan Pablo Osorio Suárez Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
Keywords: catalytic cracking, crackability, predicting properties, statistical model

Abstract

This paper presents a statistical model for prediction of feedstock’s crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by microactivity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount
of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feedstock’s potential. Extensive feedstocks data base from Instituto Colombiano del Petróleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Gasoils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstoks - Residues or feedstocks combined (blending of gasoil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

References

Algelt, K. H. & Boduszinski, M. M. (1994). Composition and analysis of heavy petroleum fractions. 115, 161-168. New York: Marcel Dekker Inc.

Ancheyta, J., López, F. & Aguilar, E. (1998). Correlations for predicting the effects of feedstock properties on catalytic cracking kinetic parameters. Ind. Eng. Chem. Res. , 37 (12): 4637-4640. https://doi.org/10.1021/ie980138e

ASTM D3907-03. Testing Fluid Catalytic Cracking (FCC) Catalysts by Microactivity Test (2003).

Baldrich, C. A. & Novoa, L. A. (2007). Detailed chemical characterization of petroleum middle fractions by chemometrics analysis of their ultraviolet spectrum. CTYF- Ciencia, Tecnología y Futuro. 3(3): 173-190.

Bollas, G. M., Vasalos, I. A., Lappas, A. A., Latridis, D. K. & Tsioni, G. K. (2004). Bulk molecular characterization approach for the simulation FCC feedstocks. Ind. Eng. Chem. Res. , 43 (13): 3270-3281. https://doi.org/10.1021/ie034239a

Dewachtere, N. V., Santaella, F. & Froment, G. F. (1999). Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil. Chem. Eng. Sci., 54 (15-16): 3653-3660. https://doi.org/10.1016/S0009-2509(98)00518-1

Fisher, I. P. (1990). Effect of feedstock variability on catalytic yields. Applied Catalysis, 65: 189-210. https://doi.org/10.1016/S0166-9834(00)81597-3

Lerner, B. A. & Himpsl. (1997). Feed molecular properties explain cracking results. Oil Gas, 95 (48): 61-67.

Mariaca, E., Rodriguez, S. & Maya, R. (2003). Reactive hydrogen content: A tool to predict FCC yields. Int. J. Chem. React. Eng., 1: A46. https://doi.org/10.2202/1542-6580.1092

Ng, S. H., Wang, J., Fairbridge, C., Zhu, Y., Yang, L., Ding, F. & Yui, S. (2004). Study of Canadian FCC feeds from various origins and treatments. 2. Some specific cracking characteristics and comparisons of products yields and qualities between reactor and MAT Unit. Energy & Fuels, 18 (1): 172-187.

https://doi.org/10.1021/ef0301001

Reina, E., Osorio J. V. (2005) Modelamiento teórico de un reactor de lecho fijo en estado no estacionario para la ruptura catalítica y la desactivación de cargas. Tésis de Grado: Escuela de Ingeniería Química. Universidad Industrial de Santander. Bucaramanga, Colombia.

Sheppard, C. M., Al-Alloush S. S., Green, J. B., Zagula, E. J., Young, L. L. & Wisecarver, K. D. (2003). Relating feedstocks composition to product slate and composition in catalytic Cracking. 6. Feedstocks derived from Merey, a Venezuelan crude. Energy & Fuels, 17 (5): 1360-1366. https://doi.org/10.1021/ef030077j

Shi, T. P., Xu, Z. M., Cheng, M., Hu, Y. X. & Wang R. A. (1999). Characterization index for vacuum residua and their subfractions. Energy & Fuels, 13 (4): 871-876.

https://doi.org/10.1021/ef980258z

Speight, J. (1991). The chemistry and technology of petroleum. New York. Marcel Dekker Inc, 199-201.

UOP 375-86. (1986). Characterization Factor and Estimation of Molecular Weight of Petroleum Oils. Method 375-86.

Voltz, S. E., Nace, D. M. & Weekman, V. W. (1971). Application of a kinetic model for catalytic cracking - Some correlations of rate contants. Ind. Eng. Chem. Process Des. Dev., 10 (4): 538-541. https://doi.org/10.1021/i260040a019

Xu, C., Gao, J., Zhao, S. & Lin, S. (2005). Correlation between feedstock SARA components and FCC product yields. Fuel, 84 (6): 669-674. https://doi.org/10.1016/j.fuel.2004.08.009

How to Cite
Guzmán, G. N., Martínez Cruz, F. L., & Osorio Suárez, J. P. (2009). Prediction of the FFC feedstocks crackability. CT&F - Ciencia, Tecnología Y Futuro, 3(5), 125–142. https://doi.org/10.29047/01225383.453

Downloads

Download data is not yet available.
Published
2009-12-31
Section
Scientific and Technological Research Articles

Altmetric

QR Code

Some similar items: