Estimation of critical properties of typically Colombian vacuum residue SARA fractions

  • Adán Yovani León Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Martha Parra Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Jorge Luis Grosso Universidad Industrial de Santander (UIS), Escuela de Ingenieria Química, Bucaramanga, Santander, Colombia
Keywords: vacuum residue, petroleum fraction, critical property, refinería de Barrancabermeja, Ciencia, Tecnología y Futuro

Abstract

Knowledge of critical properties and the acentric factor is required in phase-equilibrium studies in different extraction processes conducted in the petroleum industry, particularly in the solvent deasphalting process. Correlations to estimate critical temperature, critical pressure and acentric factor values of SARA (Saturated, Aromatic, Resin, and Asphaltene) fractions of vacuum residue from the Barrancabermeja Refinery were determined from their physical properties such as density (molar volume) and molecular weight. New correlations for critical property prediction were evaluated using model molecules and the Avaullee and Satou's group contribution methods, respectively.

References

Akbarzadeh, K., Alboudwarej, H., Ayatollahi, S., &Yarranton, W. (2004). Estimation of SARA fraction properties with the SRK EOS. JCPT, 43 (9), 31-39. https://doi.org/10.2118/04-09-02

Akbarzadeh, K., Alboudwarej, H., Beck, J., & Yarranton, H. (2003). A generalized regular solution model for asphaltene precipitation from bitumens and solvents. AICHE Journal, 49 (11), 2948-2956. https://doi.org/10.1002/aic.690491124

Alboudwarej, H., Akbarzadeh, K., Beck, J., & Yarranton, W. H. (2003). Regular solution model for asphaltene precipitation from bitumens and solvents. AICHE Journal, 49 (11), 2948-2956. https://doi.org/10.1002/aic.690491124

ASTM D-4052 (1996). American Society for Testing and Materials. Standard Test Method for Density and Relative Density of Liquids by Digital Density Meter. Philadelphia.

ASTM D-4124 (1997). American Society for Testing and Materials. Standard test methods for separation of asphalt into four fractions. Philadelphia.

ASTM D (2007). American Society for Testing and Materials. Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method. Philadelphia.

ASTM D -2320 (1998). American Society for Testing and Materials. Standard test method for density (relative density) of solid pitch (pycnometer method). Philadelfhia.

ASTM D-6352. American Society for Testing and Materials. Método de ensayo para la distribución de puntos de ebullición de destilados de petróleo en un rango de ebullición de 174 a 700°C por cromatografía de gases.

Andersen, S., & Birdi, K. (1990). Influence of temperature and solvent on the precipitation of asphaltenes. Fuel Science and Technology International, 8 (6), 593-615. https://doi.org/10.1080/08843759008915946

Avaullee, L., Trrasy, L., Neau, E., & Jaubert, J. N. (1997). Thermodynamic modelling for petroleum fluids: I. Equation of state and group contribution for the estimation of thermodynamic parameters of heavy hydrocarbons. Fluid Phase Equilibria,139: 155-170. https://doi.org/10.1016/S0378-3812(97)00168-4

Barth, E. J. (1984). Asphalt: Science and Tecnology. Gordon and Breach Science,112-170 and 182-207.

Behrenbruch, P., & Dedigama, T. (2007). Clasification and characterization of crude oils based on distillation properties. J. Petroleum Scien. and Engineer., 57: 166-170. https://doi.org/10.1016/j.petrol.2005.10.016

Cheng-Tze Fu., & Rao Puttagunta. (1986). Pseudo-critical properties of heavy oils and bitumens. Fluid Phase Equilibria, 30: 281-295. https://doi.org/10.1016/0378-3812(86)80062-0

Constantinou, L., & Gani, R. (1994). New Group Contribution Method for Estimating Properties of Pure Compounds. AICHE Journal, 40 (10), 1697-1710. https://doi.org/10.1002/aic.690401011

Curtis-H., Whitson, & Riazi, M. (2000). Phase behavior. Monograph SPE Society of Petroleum Engineers. 20: 67-87 and 120-195.

Garnier, S,. Neau, E., Alessi, P., Cortesi, A., & Kikic, I. (1999). Modelling solubility of solids in supercritical fluids using fusion properties. Fluid Phase Equilibria, 158-160: 491-500. https://doi.org/10.1016/S0378-3812(99)00151-X

Gawel, I. (1987). Structural Investigation of Asphalts produced from paraffinic-base crude oil by different methods. Fuel, 66 (5), 618-621. https://doi.org/10.1016/0016-2361(87)90268-7

Golam, R., & Mansouri, S. (2006). Cubic EOS calculates heavy oil SARA fractions. Oil and Gas Journal, Dec., 11, 48-49.

Jalowka, J., & Daubert, T. (1986). Group contribution method to predict critical temperature and pressure of hydrocarbons. Ind. Eng. Chem. Process. Des. Dev. (25), 139-142. https://doi.org/10.1021/i200032a021

Kotlyar, L. S.,Woods, R. J., & Sparks, B. D. (2001). Effect of thermal and hydro-catalytic treatment on the molecular chemistry of narrow fractions of athabasca bitumen pitch. Energy and Fuel, 15: 113-119. https://doi.org/10.1021/ef0001538

León-B. Adan. (2008). Modelamiento Termodinámico del desasfaltado de fondos de vacío basado en la ecuación de estado de Peng - Robinson y la técnica de quimiometría. Tesis de maestría en Ingenierìa Química,Universidad Industrial de Santander, UIS.

Murgich, J., Rodríguez, M., & Aray, Y. (1995). Molecular recognition and molecular mechanics of micelles of some model Asphaltenes and Resins. Centro de Química, IVIC, Apartado 21827, Caracas 1020A, Venezuela.

Parra, J., Martha., & Cañas, A., Wilson. (2007). Thermodynamic model for solvent deasphalting of vacuum residue. Proceedings annual meeting, AICHEJ Journal Nov. 4.

Poirier, M. A., & Sawatzky, H. (1990). Changes in Chemical component type composition and effect on rheological properties of asphalts, preprints. Symposium on Chemistry and Characterization of Asphalts, Div. Pet. Chem., Am. Chem. Soc., 35 (3), 301-307.

Prausnitz, J. (2000). Molecular Thermodynamics of Fluid- Phase Equilibria. University of California, Prentice Hall PTR (Oct. 22 1988).

Riazi, M. R., & Al-Sahhaf, T., (1996). Physical properties of heavy petroleum fractions and crude oils. Fluid Phase Equilibria,117: 217-224. https://doi.org/10.1016/0378-3812(95)02956-7

Riazi, M., & Daubert, T. (1987). Characterization parameters for petroleum fractions. Ind. Eng. Chem. Res., 26: 755-759. https://doi.org/10.1021/ie00064a023

Riazi, M. R. (2005). Characterization and properties of petroleum fractions. ASTM, Printed in Philadelphia, 150-197. https://doi.org/10.1520/MNL50_1ST-EB

Rogel, E., & Carbognani, L. (2003). Density estimation of asphaltenes using molecular dynamics simulations. Energy and Fuels, 17: 378-386. https://doi.org/10.1021/ef020200r

Rogel, E. (2000). Simulation of interactions in asphaltene aggregates. Departamento de Producción, PDVSAINTEVEP, Apartado. 76343, Caracas-1070A, Venezuela. Revised Manuscript Received. https://doi.org/10.1021/ef990166p

Rogel, E., Leon, O., Espidel, J., & González, J. (1999). SPE Latin American and Caribbean Petroleum Engineering Conference, SPE53998, Venezuela.

Satou, M., Nakamura, T., Chiba, T., & Hattori, H. (2000). Contributions of aromatic conjunction and aromatic inner carbons to molar volume of polyaromatic hydrocarbons. Fuel, 79: 1057-1066. https://doi.org/10.1016/S0016-2361(99)00245-8

Strausz, O. P., Mojelsky, T. W., & Lown, E. M. (1992) Fuel, The molecular structure of asphaltene: an unfolding story. 7: 1355-1362. https://doi.org/10.1016/0016-2361(92)90206-4

Suoqi Zhao, Renan Wang, & Shixioing Lin. (2006). High - pressure phase behavior and equilibria for Chinese Petroleum Residua and Light Hydrocarbon Systems. Part I. Petroleum Science and Technology, 24: 285-295. https://doi.org/10.1080/10916460500283310

Suoqi Zhao, Renan Wang, & Shixioing Lin. (2006). High -pressure phase behavior and equilibria for Chinese petroleum Residua and light hydrocarbon systems. Part II. Petroleum Science and Technology, 24: 297-318. https://doi.org/10.1080/10916460500287915

Wakeham, W. A., Cholakov, G., & Stateva, R. P. (2003). Liquid density and critical properties of hydrocarbons estimated from molecular structure. J. Amer. Chem. Soc., 47 (3), 559-570. https://doi.org/10.1021/je010308l

Wang, J., & Anthony, E. J., (2003). A study of thermal - cracking behavior of asphaltenes. Chem. Eng. Scien., 58: 157-162. https://doi.org/10.1016/S0009-2509(02)00430-X

Zander, M. (1987). Recent advances in pitch characterization. FUEL, 1987, 66: November. https://doi.org/10.1016/0016-2361(87)90001-9

Zhang Jianzhong, Zhan Biao, & Zhao Suoqui. (1998). Simplified prediction of critical properties of nonpolar compounds, petroleum, and coal liquid fractions. Ind. Eng. Chem. Res., 37: 2059-2060. https://doi.org/10.1021/ie970604k

How to Cite
Yovani León, A., Parra, M., & Grosso, J. L. (2008). Estimation of critical properties of typically Colombian vacuum residue SARA fractions. CT&F - Ciencia, Tecnología Y Futuro, 3(4), 129–142. https://doi.org/10.29047/01225383.467

Downloads

Download data is not yet available.
Published
2008-12-31
Section
Scientific and Technological Research Articles

Altmetric

QR Code