Enhanced volatile organic compound combustion by hydrogen peroxide: kinetic modelling

  • A. L MARTÍNEZ Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
Keywords: hydrogen peroxide, VOCs, Incineration, Modelling

Abstract

The addition of hydrogen peroxide (H202) into a stream of heated air containing volatile organic compounds (VOCs), such as heptane and chlorobenzene, has been found to increase the destruction of those VOCs. Detailed  kinetic models for  the enhanced  incineration of  heptane  (44  chemical  species,  144 reactions), and chlorobenzene (62 species, 212 reactions) were developed. The computer code CHEMKlN was used for the model simulations, and sensitivity analyses were performed using the SENKIN code. Ádditional thermodynamic data needed for the model were calculated using the group addition method of Benson, and the computer code THERM. lt was concluded that the H202 enhancement effect in the oxidation of heptane occurs by the thermal dissociation of the peroxide molecule, providing two OH• radicals, followed by hydrogen abstraction of the heptane molecule by the OH• radicals. In the unenhanced case, the key reaction is the thermal dissociation of the heptane molecule into two radicals. For chlorobenzene, the major VOC destruction pathway seems to be the attack of an H02• to generaie the  phenoxy  radical.  The H02•  radicals are  indirectly  supplied  by the  peroxide  through  OH•   radical attack on other H202 molecules, and by other downstream reactions. This is a plausible explanation for the experimental obsevation of the need of much higher concentrations of H202 with chlorobenzene than with heptane, and for the apparent delay in the destruction of chlorobenzene.

References

Brezinsky, K., 1986. "The High Temperature Oxidation of Aromatic Hydrocarbons", Prog. Energy Combustion Sci. 12. https://doi.org/10.1016/0360-1285(86)90011-0

Chang, W. D., Karra, S. B. y Senkan, S. M., 1987. "A Computational Study Chlorine Inhibition of CO Flames" , Combustion and Flame, 69: 113. https://doi.org/10.1016/0010-2180(87)90024-1

Clausen, C. A. , Cooper, C. D., Hewett, M. y Maitinez, A., 1992. "Enhancemnet of Organic Vapor Incineration by using Ozone, J. of Hazardous Materials, 31: 75. https://doi.org/10.1016/0304-3894(92)87040-M

Cooper, C. D., Clausen, C. A., Tomlin, D., Hewett, M. y Martlnez, A., 1991. "Enhancement of Organic Vapor Incineration Using Hydrogen Peroxide" , J. Hazardous Materials, 27: 273. https://doi.org/10.1016/0304-3894(91)80054-R

Dempsey, R. D. y Oppelt, E. T., 1993. "Incineration of Hazardous Waste: A Critica! Review Update", J. of the Air and Waste Managem.ent Associá tion , 43: 25-73. https://doi.org/10.1080/1073161X.1993.10467116

Frenklach, M., 1984. "Modeling", Chapter 7 en Combustion Chemistry, New York: W. C. Gardiner Jr. (Ed.), Springer-Vrelag.

Kee, R. J., Rupley, F. M. y Miller, J. A., 1991a, 1989. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories SAND 89-8009-UC-401, Reprinted March. https://doi.org/10.2172/5681118

Kee, R. J., Rupley, F. M. y Miller, J. A., 199 1b. Chemkin Thermodynamic Data Base. Sandia National Laboratories SAND 87-8215B.UC-4, reprinted December.

Lutz, A. E., Kee, R. J. y Miller, J. A., 1991. Senkin: A Fortran Program far Predicting Gas Phase Chemical kinetics with Sensitivity Analysis, Sandia Report Sand, 87 - 8248 VC-401, August.

Martí.nez, A., 1993. Kinetic Modeling of the H2 0 2 Enlumced Jncineration of Heptane and Chlorobenzene, Ph.D. Dissertation, University of Central Flo1ida. .

Martínez, A., Geiger, C., Hewett, M., Clausen, C. A. y Cooper, C. D., 1993. "Using Hydrogen Peroxide or

Ozone to Enhance the Incineration of Volatile Organic Vapors", Waste Management, 13: 261 - 270.

Oppelt, E. T. , 1987. "Incineration of Hazardous Waste", Journal of the Air Pollution Control Associah'on , 37 (5): 558. https://doi.org/10.1080/08940630.1987.10466245

Ritter, E. R. y Bozzelli, J. W., 1990. "Reactions of Chlori­ nated Benzenes in H2 and in H2/02 Mix tures: Thenno­ dynain ic Im plica tion s on Pat hways to Dio xin" Combustion Sci. and Technology., 74: JJ7 . https://doi.org/10.1080/00102209008951684

Ritter, E., 1991. "THERM: A Computer Code for Estirnating The rrnody.na mic Properties for Species Important to Combustion and Reaction Modeling", J. f Chem. Inf Comp. Sci., 31: 400. https://doi.org/10.1021/ci00003a006

Roesler, J. F., Letter, A. E. y Dryer, F. L., 1992. "The inhibition of COIH20I02 Reaction by Trace Quantities of HCI" , Combustion Sd. and Technology, 82: 87. https://doi.org/10.1080/00102209208951814

Sanderson, R. T., 1989. Simple Jnorganic Substances. Ma­ labar, Florida: Robert E. Krieger Publishing Co.

Tilden, J. W., Costanza,V., McRae, G. J. y Seinfield, J.H. , 1981. Sensitivity Analysis of Chemically Reacting Systems. Springe r series in Chemical Physics 18, Ebert, K. H., Deufhard, P. y Jager, W. (Eds .), New York: Springer-Verlag Berling Heildelberg, 69. https://doi.org/10.1007/978-3-642-68220-9_6

Wamatz, J., 1983. "The Mechansim of High Temperature Combustion of Propane and Butane", Combustion Sci. and Technologys , 34: 177. https://doi.org/10.1080/00102208308923692

Wamatz, J., 1984. "Rate Coefficients in the C/H/O System", Capítulo 5 en Combustion Ch.emíst ry, New York: W. C. Gardiner Jr. (Ed.), Springer-Verlag.

Westbrook, C. K. y Dryer, F. L., 1984. "Chemical Kinetic Modeling of Hydrocarbon Combustion", Prog Energy CombustionSci., 10: l. https://doi.org/10.1016/0360-1285(84)90118-7

Westbrook, C. K., 1986. "Chemical Kinetic Modeling of Higher Hydrocarbon Fuels" , A/AA Journal, 24 (12): 2002. https://doi.org/10.2514/3.9559

How to Cite
MARTÍNEZ, A. L. . (1995). Enhanced volatile organic compound combustion by hydrogen peroxide: kinetic modelling. CT&F - Ciencia, Tecnología Y Futuro, 1(1), 17–31. https://doi.org/10.29047/01225383.604

Downloads

Download data is not yet available.
Published
1995-12-31
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code