Acid properties of mordenites modified by dealuminatation

  • L. ALMANZA Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Y. BEN TAARIT lnstitut de Recherches sur la Catalyse, CNRS. 2, Av. Albert Einstein - 69626 Villeurbanne Cedex - France
Keywords: mordenite, dealuminatation, acidity

Abstract

Mordenite is dealuminated by hidrotherrnal treatment. Dealuminatation produces nonframework aluminium NFAL. Different types of NFAL were detected, one is a cationic type that is located in ion-exchange positions, other is a neutral type, and another an amorphous phase not "visible" to the 27Al RMN technique. The Lewis acid sites are associated with the NFAL species located in the zeolite pares. lt is not possible to find a relationship between the acid-strength of Bronsted acid sites and the structural aluminium content. However, the number of pyridine titrated acid sites increases  after dealumination process. Adsorption studies also indicate presence of a mesoporous network in the materials that could decrease diffusional restrictions.

References

Beaumont, R. y Barthomeuf, D. , 1972. "X, Y, aluminium­ deficient and ultrastable faujasite-type zeolites. l. acidíc and structural properties" , J. of Cata!., 26: 218. https://doi.org/10.1016/0021-9517(72)90052-8

Beyer, H. K., Belenykaja, l. M., Mishin, I. W. y Borbely, G., 1984. "Structure and reactívity of modífied zeolítes". Amsterdam, Jacobs, P. et al. (Editors), Elsevier Science Publishers, 133 - 140. https://doi.org/10.1016/S0167-2991(09)61148-4

Bodart, P., Nagy, J. B., Debras, G., Gabelica, Z., y Jacobs, P., 1986. "Aluminum siting in mordenite and dealu­ mination machanism", J. Phys. Chem., 90 (21): 5183 - 5190. https://doi.org/10.1021/j100412a058

Chen, N.Y., Smith, F. A., 1976. "Preparation of dealu­ minized mordenite" , lnorganic Chemistl)', vol 15, No. 2, 295 - 297. https://doi.org/10.1021/ic50156a011

Coudurier, G., Naccache, C. y Védrine, J. C. , 1982. "Uses of IR spectroscopy in identifying ZSM zeolite structure", J. Chem. Soc., Chem. Commun., (24): 1413 - 1414. https://doi.org/10.1039/c39820001413

Engelhardt, _G. y Michel, D., 1987. Higlz Resolution Solid State NMR of silicates and Zeolites, John Wiley & m. .

Ga1nlon, G., Conna,.. A., y Fornés, V., 1989. "Evidence for the presence of superacid nonframework hydroxyl groups in dealuminated HY zeolites' '., Zeolites, 9 (1): 84 - 86. https://doi.org/10.1016/0144-2449(89)90015-8

Gnep, N. S., Roger, P., Cartraud, P., Guisnet, M., Juguin, B., y Hamon, C., 1989. C.R. Acad. Sci. Paris, t. 309, Serie II, 1743 - 1747.

Goovaerts, F., Vansant, E. F., Phílippaerts, J., Hulsters, P.D. y Gelan, J., 1989. "Jnitial cracking properties and physícochemical characterization of acid-leached small­ port (SP) and large-port (LP) mordenites by pulse he­ xane cracking, infrared and aluminum-27 magic angle spinning nuclear magnetic resonance spectroscopy", J. Chem. Soc., Faraday Trans. 1, 85 (11): 3675 - 3685. https://doi.org/10.1039/f19898503675

Goovaerts, f., Vansam, E. F., Hulsters, P. D. y Gelan, J., 1989. "Stmctural vibrations of acid-leached mordenites: determi nation of structural aluminum by wavenumber and intensity analysis", J. Chem. Soc., Faraday Trans., 1, 85 (11): 3687 - 3694. https://doi.org/10.1039/f19898503687

Gregg, S. J. y Sing, K. S. W., 1982. Adsorption, suiface area and porosity, Londres, Academic Press, 303 pp.

Haas, J., Fetting, F., Plog, C., Kerfin, W., Gerhard, W. y Roth, G., 1987. "Influence of the hydrothennal treatmerit on the catalytic behavior of mordenite and on the ah,1minum distribution in the crystallite", Applied Cata!., 35 (2): 311 - 320. https://doi.org/10.1016/S0166-9834(00)82869-9

Hays, G. R., Van Erp, W. A., Alma, N. C. M., Couperus, P.A., Huis, R. y Wilson, A.E., 1984. "Solid-state silicon NMR studies of the zeolite mordenite and its dealumination", Zeolites, 4 (4): 377 - 383. https://doi.org/10.1016/0144-2449(84)90015-0

Jacobs P: ,Y Vytterhoeven, J. B., 1971."Infrared study of deep-bed calcined ammoniurn-exchanged Y zeolites" , J. of Catal., 22 (2): 193 - 203. https://doi.org/10.1016/0021-9517(71)90185-0

Jansen, J. C., Vvan der Gaug, E. J. y Van Bekkum, H., 1984. "Identification of ZSM-type and other 5-ring containing zeolites by IR spedroscopy", Zeolites, 4 (4): 369 - 372. https://doi.org/10.1016/0144-2449(84)90013-7

Kerr, G. T., 1969. "Chemistry of crystalline aluminosili­ cates-7", J. of Catal., 15 (2): 200 - 204. https://doi.org/10.1016/0021-9517(69)90024-4

Lunsford, J. H., 1968. "Surface interactions of NaY and decationated Y zeolites with nitric oxide as determined by electron paramagnetic resonance spectroscopy. (Electron paramagnetic resonance study of interaction between adsorbed nitric oxide and NaY and decationized Y zeolites surfaces, considering catalytic activity)", J. Phys. Chem., 72 (Nov.): 4163 - 4168. https://doi.org/10.1021/j100858a037

Marvin, F. y Johnson, L., 1978. J. of Catal., 52,425. https://doi.org/10.1016/0021-9517(78)90346-9

Meyers, B. L., Fleisch, T. H., Ray, G. J., Miller, J. T., y Hall, J. B., 1988. "A multitechnique characterization of dealuminated mordenites", J. of Catal. , 11O (1): 82 - 95. https://doi.org/10.1016/0021-9517(88)90299-0

Mirodatos,.C., y Barthomeuf, D., 1981. "Superacid sites in zeolites", J. Chem. Soc., Chem. Commun., 2: 39- 40. https://doi.org/10.1039/c39810000039

Musa, M., Tarina, V., Stoica, A. D., Ivanov, E., Plostinaru, D., Pop, E., Poo, G. R., Garrea, R., Birjega, R., Musca,

G. y Paukshtis, E. A., 1987. "Sorne structural cbarac­ teristics of dealuminated synthetics mordenites", Zeolites, 7 (5): 427 - 432. https://doi.org/10.1016/0144-2449(87)90009-1

Pine, L. A., Maher , P. J., y Wachter, W. A., 1984. "Prediction of cracking catalyst behavior by a zeolite unit cell size model", J. of Catal., 85 (2): 466 - 476. https://doi.org/10.1016/0021-9517(84)90235-5

Raatz, F., Marcilly, C., y Freund, E., 1985. "Comparison between small port and large port mordeniles", Zeolites, 5 (5): 329 - 333. https://doi.org/10.1016/0144-2449(85)90168-X

Sawa, M., Niwa, M., y Murakami, Y., 1990. "Relationship between acid amount and framework aluminum content in mordenite", Zeolites, 10 (6): 532 - 538. https://doi.org/10.1016/S0144-2449(05)80308-2

Seddon, D., 1983. "Theconversionofaromatics over dealu­ minized mordenites", Applied Catal. , 7 (3): 327 - 336. https://doi.org/10.1016/0166-9834(83)80032-3

Scherzer, J., 1984. "The Preparation and Characterization of Aluminium Deficient Zeolites", in Catalytic Materia.Is, American Chemical Society, 157. https://doi.org/10.1021/bk-1984-0248.ch010

Shannon, R. D., Gardner, K. H. y Staley, R. H., 1985. "The nature of the nonframework aluminum species formed during the dehydroxylation of H-Y", J. Phys. Chem., 89(22): 4778 - 4788. https://doi.org/10.1021/j100268a025

Skeels, G. W., y Breck D. W., 1984. Procedings of the sixth international zeolite conference, Ed. Olson, D., y Bisio, A., Butterroorths, 87.

VanGeem, P. C., Scholle, K. F. M. G. J. y Van derVelden, G. P. M., E>'88. "Study of the transfo1mation of small­ port into arge-port mordenite by magic-angle spinning NMR and infrared spectroscopy", J. Phys. Chem., 92 (6): 1585 - 1589. https://doi.org/10.1021/j100317a042

Weller, S. W., y Bauer, J. M., 1969; Studies ofthe catalytic and Chemical Properties of acid-extracted mordenítes, Washington D.C., Preprint 62, Anual Meeting A.I.Ch.E.

How to Cite
ALMANZA, L. ., & TAARIT, Y. B. . (1995). Acid properties of mordenites modified by dealuminatation. CT&F - Ciencia, Tecnología Y Futuro, 1(1), 103–113. https://doi.org/10.29047/01225383.611

Downloads

Download data is not yet available.
Published
1995-12-31
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code