Development of expression for resistance to erosion by solid particles in turbine blades

Keywords: Erosion, solid particles, blades, turbines, load, resistance

Abstract

The application of reliability centered maintenance onrepairable equipment requires that the reliability calculation should not to be based on failure statistics, as in traditional methods, but rather on its condition. The "load vs resistance" method presumesthe comparison of process parameters with carefully selected mechanical properties of the materials. The author proposes the calculation based on parameters monitored for diagnosis purposes. Specifically, he analyzes the erosion of steam turbine bladessubject tothe action of solid particle from the superheaters, which, under certain conditions, grow to critical thicknesses and due to stresssactionscaused by thermal changes, fracture and detach, acquiring such energy that then impacts the surface of the blades causing theirerosion. These phenomena are analyzed and equations are established in relation withthe mechanical properties of the blade metal , with the energy  requird by oxide flakes to cause their erosion. An expression has been obtained, allowing for the application of the method, whichd has not been found in analyzed research works.

References

Aghdasi, M. R., Teymourtash, A. R., & Lakzian, E. (2022). Optimization of the pitch to chord ratio for a cascade turbine blade in wet steam flow. Applied Thermal Engineering, 211,118445,DOI: https://doi.org/10.1016/j.applthermaleng.2022.118445

Camaraza-Medina, Y., Sánchez-Escalona, A. A., Retirado-Mediaceja, Y., & García-Morales, O. F. (2020). Use of air cooled condenser in biomass power plants: a case study in Cuba. International Journal of Heat and Technology, 38(2), 425-431 DOI: https://doi.org/10.18280/ijht.380218

Camaraza-Medina, Y., Hernandez-Guerrero, A., & Luviano-Ortiz, J. L. (2021). New method for the cost assessment analysis of shell-and-tube heat exchangers. Latin American Applied Research, 51(4), 315-320.DOI: https://doi.org/10.52292/j.laar.2021.713

Camaraza-Medina, Y., Retirado-Mediaceja, Y., Hernandez-Guerrero, A., & Luviano-Ortiz, J. L. (2021). Energy efficiency indicators of the steam boiler in a power plant of Cuba. Thermal Science and Engineering Progress, 23, 100880., DOI: https://doi.org/10.1016/j.tsep.2021.100880

Camaraza-Medina, Y., Hernandez-Guerrero, A., & Luviano-Ortiz, J. L. (2022). Experimental study on influence of the temperature and composition in the steels thermo physical properties for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 147(21), 11805-11821. DOI: https://doi.org/10.1007/s10973-022-11410-8

Das, S. K., Godiwalla, K. M., Mehrotra, S. P., Sastry, K. K. M., & Dey, P. K. (2006a). Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components, Sadhana, 31, 583-95, DOI: https://doi.org/10.1007/BF02715915

Das, S. K., Godiwalla, K. M., Mehrotra, S. P., & Dey, P. K. (2006b). Mathematical modelling of erosion behaviour of impacted fly ash particles on coal fired boiler components at elevated temperature. High Temperature Materials and Processes, 25(5-6), 323-336. DOI: https://doi.org/10.1515/HTMP.2006.25.5-6.323

Evans, H. E., & Lobb, R. C. (1984). Conditions for the initiation of oxide-scale cracking and spallation. Corrosion Science, 24(3), 209-222. DOI: https://doi.org/10.1016/0010-938X(84)90051-9

Frenkel, I. B., Karagrigoriou, A., Lisnianski, A., & Kleyner, A. (2013). Applied reliability engineering and risk analysis: probabilistic models and statistical inference. John Wiley & Sons. https://doi.org/10.1002/9781118701881

Gandhi, M. B., Vuthaluru, R., Vuthaluru, H., French, D., & Shah, K. (2012). CFD based prediction of erosion rate in large scale wall-fired boiler. Applied Thermal Engineering, 42, 90-100. DOI: https://doi.org/10.1016/j.applthermaleng.2012.03.015

Graciano, D. M., Rodríguez, J. A., Urquiza, G., & Tecpoyotl-Torres, M. (2023). Damage evaluation and life assessment of steam turbine blades. Theoretical and Applied Fracture Mechanics, 103782. DOI: https://doi.org/10.1016/j.tafmec.2023.103782

He, H., Zheng, Z., Yang, Z., Wang, X., & Wu, Y. (2020). Failure analysis of steam turbine blade roots. Engineering Failure Analysis, 115, 104629.DOI: https://doi.org/10.1016/j.engfailanal.2020.104629

Huang, Y., Han, R., Qi, J., Duan, H., Chen, C., Lu, X., & Li, N. (2022). Health risks of industrial wastewater heavy metals based on improved grey water footprint model. Journal of Cleaner Production, 377, 134472., DOI: https://doi.org/10.1016/j.jclepro.2022.134472

Kaneko, Y. (2022). Mechanical design and vibration analysis of steam turbine blades. In Advances in Steam Turbines for Modern Power Plants (pp. 139-162). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-824359-6.00007-X

Katinić, M., Kozak, D., Gelo, I., & Damjanović, D. (2019). Corrosion fatigue failure of steam turbine moving blades: A case study. Engineering Failure Analysis, 106, 104136. DOI: https://doi.org/10.1016/j.engfailanal.2019.08.002

Khan, M. S., & Sasikumar, C. (2022). Failure analysis of AISI 420 steel turbine blade operating at low-pressure. Materials Today: Proceedings, 66, 3804-3808. DOI: https://doi.org/10.1016/j.matpr.2022.06.197

Kshirsagar, R., & Prakash, R. (2021). Prediction of corrosion based damages in turbine blades using modal and harmonic analyses. Materials Today: Proceedings, 46, 10093-10101.DOI: https://doi.org/10.1016/j.matpr.2021.07.417

Li, X., Cai, Z., Hu, M., Li, K., Hou, M., & Pan, J. (2021). Effect of NbC precipitation on toughness of X12CrMoWNbVN10-1-1 martensitic heat resistant steel for steam turbine blade. Journal of Materials Research and Technology, 11, 2092-2105.DOI: https://doi.org/10.1016/j.jmrt.2021.02.049

Li, D. W., Liu, J. X., Sun, Y. T., Huang, W. Q., Li, N., & Yang, L. H. (2023). Microstructure and mechanical degradation of K403 Ni-based superalloy from ultra-long-term serviced turbine blade. Journal of Alloys and Compounds, 957, 170378.DOI: https://doi.org/10.1016/j.jallcom.2023.170378

Liu, Y., Wang,Y., Fan, Z., Bai, G., & Chen, X. (2021). Reliability modelling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes, Reliability Engineering & System Safety, 213, 107648, DOI: https://doi.org/10.1016/j.ress.2021.107648

Mbabazi, J. G., Sheer, T. J., & Shandu, R. (2004). A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear, 257(5-6), 612-624.DOI: https://doi.org/10.1016/j.wear.2004.03.007

Mosharafi, M., Mahbaz, S., & Dusseault, M. B. (2020). Statistical methods to assess the reliability of magnetic data recorded over steel corrosion sites. Construction and Building Materials, 264, 120260. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120260

Postnikov, I., & Mednikova, E. (2022). A reliability analysis of fuel supply for district heating systems based on statistical test method. Energy Reports, 8, 304-311., DOI: https://doi.org/10.1016/j.egyr.2022.08.020

Quintanar-Gago, D. A., Nelson, P. F., Diaz-Sanchez, A., & Boldrick, M. S. (2021). Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliability Engineering & System Safety, 207, 107329.DOI: https://doi.org/10.1016/j.ress.2020.107329

Retirado-Mediaceja, Y., Camaraza-Medina, Y., Sánchez-Escalona, A. A., Laurencio-Alfonso, H. L., Salazar-Corrales, M. F., & Zalazar-Oliva, C. (2020). Thermo-exergetic assessment of the steam boilers used in a cuban thermoelectric facility. International Journal of Design and Nature and Ecodynamics, 15(3), 291-298. DOI: https://doi.org/10.18280/ijdne.150302

Rivaz, A., Anijdan, S. M., Moazami-Goudarzi, M., Ghohroudi, A. N., & Jafarian, H. R. (2022). Damage causes and failure analysis of a steam turbine blade made of martensitic stainless steel after 72,000 h of working. Engineering Failure Analysis, 131, 105801.DOI: https://doi.org/10.1016/j.engfailanal.2021.105801

Rokicki, E., Gradzki, R., Kulesza, Z., Cecotka, P., & Dec, K. (2023). Frequency and modeshape evaluation of steam turbine blades using the metal magnetic memory method and vibration wave propagation. Mechanical Systems and Signal Processing, 192, 110218.DOI: https://doi.org/10.1016/j.ymssp.2023.110218

Roque-Villalonga, G., & Camaraza-Medina, Y. (2022). Modelación empírica de la conductividad térmica para un grupo de acero. Dyna, 89(224), 156-164. DOI: https://doi.org/10.15446/dyna.v89n224.103879

Saxena, S., Pandey, J. P., Solanki, R. S., Gupta, G. K., & Modi, O. P. (2015). Coupled mechanical, metallurgical and FEM based failure investigation of steam turbine blade. Engineering Failure Analysis, 52, 35-44., DOI: https://doi.org/10.1016/j.engfailanal.2015.02.012

Segura, J. A., Castro, L., Rosales, I., Rodriguez, J. A., Urquiza, G., & Rodriguez, J. M. (2017). Diagnostic and failure analysis in blades of a 300 MW steam turbine. Engineering Failure Analysis, 82, 631-641., DOI: https://doi.org/10.1016/j.engfailanal.2017.04.039

Tanuma, T. (2022). Development of last-stage long blades for steam turbines. In Advances in Steam Turbines for Modern Power Plants (pp. 329-357). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-824359-6.00022-6

Wen, C., Yang, Y., Ding, H., Sun, C., & Yan, Y. (2021). Wet steam flow and condensation loss in turbine blade cascades. Applied Thermal Engineering, 189, 116748. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116748

Zhang, J., Yan, R., & Wang, J. (2022). Reliability optimization of parallel-series and series-parallel systems with statistically dependent components. Applied Mathematical Modelling, 102, 618-639.DOI: https://doi.org/10.1016/j.apm.2021.10.003

How to Cite
Perez-Castañeda, R., Garcia-Morales, O. F., & Camaraza-Medina, yanan. (2023). Development of expression for resistance to erosion by solid particles in turbine blades. CT&F - Ciencia, Tecnología Y Futuro, 13(1), 5–13. https://doi.org/10.29047/01225383.662

Downloads

Download data is not yet available.
Published
2023-06-30
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code