Sensitivity analysis of the backprojection imaging method for seismic event location

Palabras clave: Retropropagación, localización de eventos sísmicos, análisis de sensibilidad, apilamiento de difracciones.

Resumen

La precisión de los métodos de localización de señales sísmicas depende de la calidad de los datos de entrada. En la práctica, existen múltiples fuentes de incertidumbre que afectan la solución, incluyendo modelos de velocidad incorrectos, baja relación señalruido y cobertura azimutal deficiente. Además, existen señales sísmicas sin fases distinguibles que impiden su localización por métodos convencionales y requieren otro enfoque. En este trabajo, se realiza un análisis de sensibilidad de los métodos Back-Projection Imaging (BPI), aplicables para localizar sismos convencionales, microsismicidad inducida, señales tipo tremor y otros. Consecuentemente, se lleva a cabo un estudio controlado en el cual los datos sintéticos se modelan con fuentes explosivas de espectro fijo, donde cada parámetro puede perturbarse independientemente asegurando que sus efectos se manifiesten por separado en el resultado. Los resultados muestran la necesidad de pre-acondicionar los datos para reducir el ruido, el número de artefactos y mejorar la resolución de la imagen. Procesar las bajas frecuencias mejora la estabilidad del método, mientras que las altas frecuencias mejoran su exactitud. Adicionalmente, una buena cobertura azimutal reduce el error en la ubicación de un evento, en donde la profundidad resultó ser la coordenada espacial más sensible a los cambios de velocidad y geometría.

Referencias bibliográficas

Rawlinson, N., Hauser, J., & Sambridge, M. (2008). Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics, 49, 203-273. https://doi.org/10.1016/S0065-2687(07)49003-3

Eisner, L., Duncan, P. M., Heigl, W. M., & Keller, W. R. (2009). Uncertainties in passive seismic monitoring. The Leading Edge, 28(6), 648-655. https://doi.org/10.1190/1.3148403

Fink, M. (1999). Time-reversed acoustics. Scientific American, 281(5), 91-97.

Artman, B., Podladtchikov, I., & Witten, B. (2010). Source location using time‐reverse imaging. Geophysical Prospecting, 58(5), 861-873. https://doi.org/10.1111/j.1365-2478.2010.00911.x

Horstmann, T., Harrington, R. M., & Cochran, E. S. (2015). Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California. Geophysical Journal International, 203(2), 1207-1226. https://doi.org/10.1093/gji/ggv337

Nakata, N., & Beroza, G. C. (2016). Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics, 81(2), KS51-KS60. https://doi.org/10.1190/geo2015-0278.1

Nakata, N., Beroza, G., Sun, J., & Fomel, S. (2016). Migration-based passive-source imaging for continuous data. In SEG Technical Program Expanded Abstracts 2016 (pp. 2607-2611). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13959132.1

Sun, J., Xue, Z., Zhu, T., Fomel, S., & Nakata, N. (2016). Full-waveform inversion of passive seismic data for sources and velocities. In SEG Technical Program Expanded Abstracts 2016 (pp. 1405-1410). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2016-13959115.1

Beskardes, G. D., Hole, J. A., Wang, K., Michaelides, M., Wu, Q., Chapman, M. C., ... & Quiros, D. A. (2018). A comparison of earthquake backprojection imaging methods for dense local arrays. Geophysical Journal International, 212(3), 1986-2002. https://doi.org/10.1093/gji/ggx520

Warpinski, N. (2009). Microseismic monitoring: Inside and out. Journal of Petroleum Technology, 61(11), 80-85. https://doi.org/10.2118/118537-JPT

Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., & Keller, W. (2010). Comparison of surface and borehole locations of induced seismicity. Geophysical Prospecting, 58(5), 809-820. https://doi.org/10.1111/j.1365-2478.2010.00867.x

Gesret, A., Desassis, N., Noble, M., Romary, T., & Maisons, C. (2015). Propagation of the velocity model uncertainties to the seismic event location. Geophysical Journal International, 200(1), 52-66. https://doi.org/10.1093/gji/ggu374

Willacy, C., van Dedem, E., Minisini, S., Li, J., Blokland, J. W., Das, I., & Droujinine, A. (2018). Application of full-waveform event location and moment-tensor inversion for Groningen induced seismicity. The Leading Edge, 37(2), 92-99. https://doi.org/10.1190/tle37020092.1

Werner, C. & Saenger, E. H. (2018). Obtaining reliable localizations with Time Reverse Imaging: limits to array design, velocity models, and signal-to-noise ratios. Solid Earth Discussions, 9(6):1487-1505. https://doi.org/10.5194/se-2018-76

Gajewski, D., & Tessmer, E. (2005). Reverse modelling for seismic event characterization. Geophysical Journal International, 163(1), 276-284. https://doi.org/10.1111/j.1365-246X.2005.02732.x

Lokmer, I., O'Brien, G. S., Stich, D., & Bean, C. J. (2009). Time reversal imaging of synthetic volcanic tremor sources. Geophysical Research Letters, 36(12). https://doi.org/10.1029/2009GL038178

Liao, Y. C., Kao, H., Rosenberger, A., Hsu, S. K., & Huang, B. S. (2012). Delineating complex spatiotemporal distribution of earthquake aftershocks: An improved source-scanning algorithm. Geophysical Journal International, 189(3), 1753-1770. https://doi.org/10.1111/j.1365-246X.2012.05457.x

Wang, H., Li, M., & Shang, X. (2016). Current developments on micro-seismic data processing. Journal of Natural Gas Science and Engineering, 32, 521-537. https://doi.org/10.1016/j.jngse.2016.02.058

Červený, V. (1987). Ray tracing algorithms in three-dimensional laterally varying layered structures. In Seismic tomography (pp. 99-133). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3899-1_5

Vidale, J. E. (1990). Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55(5), 521-526. https://doi.org/10.1190/1.1442863

Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only. Bull. St. Louis Univ, 8(1), 56-71.

Lee, W. H. K., & Lahr, J. C. (1972). HYPO71: A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes (p. 100). US Department of the Interior, Geological Survey, National Center for Earthquake Research. https://doi.org/10.3133/ofr72224

Lahr, J. C. (1979). Hypoellipse: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern. U.S. Geological Survey Open-File Report, pp. 79-431, 1979. https://doi.org/10.3133/ofr79431

Kao, H., & Shan, S. J. (2004). The source-scanning algorithm: Mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589-594. https://doi.org/10.1111/j.1365-246X.2004.02276.x

Yoon, K., Shin, C., Suh, S., Lines, L. R., & Hong, S. (2003). 3D reverse-time migration using the acoustic wave equation An experience with the SEG/EAGE data set. The Leading Edge, 22(1), 38-41. https://doi.org/10.1190/1.1542754

Zhu, J., & Lines, L. R. (1998). Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures. Geophysics, 63(4), 1166-1176. https://doi.org/10.1190/1.1444416

Jiang, Z., Bonham, K., Bancroft, J. C., & Lines, L. R. (2009). Overcoming computational cost problems of reverse-time migration. In Proc. Annual CREWES Sponsors Meeting.

Sinha, D. P., Vishnoi, D. K., Basu, S., & Singh, V. P. (2009). A brief comparison of the efficacy of four migration algorithms–a sub-basalt example. Geohorizons, SPG. India, 24-27.

D Gajewski, D., Anikiev, D., Kashtan, B., Tessmer, E., & Vanelle, C. (2007). Localization of seismic events by diffraction stacking. In SEG Technical Program Expanded Abstracts 2007 (pp. 1287-1291). Society of Exploration Geophysicists. https://doi.org/10.1190/1.2792738

Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64(2), 516-523. https://doi.org/10.1190/1.1444558

Sethian, J. A. (1999). Fast marching methods. SIAM review, 41(2), 199-235. https://doi.org/10.1137/S0036144598347059

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), 1591-1595. https://doi.org/10.1073/pnas.93.4.1591

Baker, T., Granat, R., & Clayton, R. W. (2005). Real-time earthquake location using Kirchhoff reconstruction. Bulletin of the Seismological Society of America, 95(2), 699-707. https://doi.org/10.1785/0120040123

Anikiev, D., Valenta, J., Staněk, F., & Eisner, L. (2014). Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing. Geophysical Journal International, 198(1), 249-258. https://doi.org/10.1093/gji/ggu126

Rentsch, S., Buske, S., Lüth, S., & Shapiro, A. (2007). Fast location of seismicity: A migration-type approach with application to hydraulic-fracturing data. Geophysics, 72(1), S33-S40. https://doi.org/10.1190/1.2401139

J Pesicek, J. D., Child, D., Artman, B., & Cieślik, K. (2014). Picking versus stacking in a modern microearthquake location: Comparison of results from a surface passive seismic monitoring array in OklahomaPicking versus stacking for microseismic. Geophysics, 79(6), KS61-KS68. https://doi.org/10.1190/geo2013-0404.1

Cómo citar
Murillo Martínez, C. A., & Agudelo, W. M. (2021). Sensitivity analysis of the backprojection imaging method for seismic event location. CT&F - Ciencia, Tecnología Y Futuro, 11(1), 21–32. https://doi.org/10.29047/01225383.167

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-06-30
Sección
Artículos de investigación científica y tecnológica

Métricas

QR Code