Análisis de viabilidad para la generación eléctrica a través de fuentes renovables: hacia la producción de energía sustentable

Palabras clave: Modelos matemáticos, energía renovable, energía eólica, energía solar, biomasa, indicadores ambientales, Desarrollo sostenible, aceptación social

Resumen

La generación eléctrica mediante fuentes renovables es una alternativa eficaz para mitigar el cambio climático, pues su impacto ambiental es menor en comparación al de los combustibles fósiles. Sin embargo, hay problemas socioeconómicos constantes en los lugares donde se instalan las centrales eléctricas, especialmente en los países en desarrollo. En este trabajo, se desarrolló una metodología innovadora para evaluar la idoneidad de la generación de electricidad a través de energía solar, eólica y biomasa. A diferencia de la mayoría de los estudios encontrados en la literatura científica, este trabajo considera los aspectos sociales, ambientales y económicos como claves para determinar la idoneidad de los proyectos energéticos. Primero, se llevó a cabo un análisis sobre la aceptación social y la resiliencia hacia las energías renovables y las condiciones para que las comunidades se beneficien de estos proyectos, después, analizamos la disponibilidad y capacidad de las fuentes de energía renovable en México, como caso de estudio. A continuación, se desarrolló un conjunto de indicadores relacionados con los tres pilares de la sustentabilidad, para evaluar las condiciones de cada lugar con los mejores recursos renovables del país. También se consideró el ciclo de vida y el factor de capacidad de cada tecnología. Por último, se desarrolló un modelo matemático para conocer los lugares y tecnologías más adecuados para la generación eléctrica. Los resultados muestran una tendencia hacia los estados del norte de México, especialmente los limítrofes con Estados Unidos, a ser los más viables para la generación eléctrica. La tecnología más adecuada es la energía eólica. Finalmente, los hallazgos también indican que Oaxaca, el estado con los mejores recursos eólicos y líder en generación mediante esta tecnología en México, es el estado menos viable para la generación eólica, como fue confirmado con evidencia científica, ya que las instalaciones eólicas están asociadas con daños culturales y económicos en las comunidades receptoras en este estado.

Referencias bibliográficas

REN21, (2020). Key Findings of the GSR. [Online]. Available: https://www.ren21.net/reports/global-status-report

Chmutina, K., & Goodier, C. I. (2014). Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK. Energy Policy, 66, 62-72. https://doi.org/10.1016/j.enpol.2013.10.080

Sharma, D. C., (2007). Transforming rural lives through decentralized green power, Futures, 39(5), 583–596. https://doi.org/10.1016/j.futures.2006.10.008

Yaqoot, M., Diwan, P., & Kandpal, T. C. (2017). Financial attractiveness of decentralized renewable energy systems–A case of the central Himalayan state of Uttarakhand in India. Renewable energy, 101, 973-991. https://doi.org/10.1016/j.renene.2016.09.040

Pérez-Denicia, E., Fernández-Luqueño, F., Vilariño-Ayala, D., Montaño-Zetina, L. M., & Maldonado-López, L. A. (2017). Renewable energy sources for electricity generation in Mexico: A review. Renewable and Sustainable Energy Reviews, 78, 597-613. https://doi.org/10.1016/j.rser.2017.05.009.

Secretaría de Energía, Atlas Nacional de Zonas con Alto Potencial de Energías Limpias. [Online]. Available: https://dgel.energia.gob.mx/azel/

Secretaría de Energía, Inventario Nacional de Energías Limpias. [Online]. Available: https://dgel.energia.gob.mx/inel/

Villicaña-Ortiz, E., Gutiérrez-Trashorras, A. J., Paredes-Sánchez, J. P., & Xiberta-Bernat, J. (2015). Solar energy potential in the coastal zone of the Gulf of Mexico. Renewable Energy, 81, 534-542. https://doi.org/10.1016/j.renene.2015.03.068.

Cancino-Solórzano, Y., Gutiérrez-Trashorras, A. J., & Xiberta-Bernat, J. (2011). Current state of wind energy in Mexico, achievements and perspectives. Renewable and Sustainable Energy Reviews, 15(8), 3552-3557. https://doi.org/10.1016/j.rser.2011.05.009.

Hernández-Escobedo, Q., Manzano-Agugliaro, F., & Zapata-Sierra, A. (2010). The wind power of Mexico. Renewable and Sustainable Energy Reviews, 14(9), 2830-2840. https://doi.org/10.1016/j.rser.2010.07.019.

Rios, M., & Kaltschmitt, M. (2016). Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, 54, 384-395. https://doi.org/10.1016/j.rser.2015.10.033.

Eseonu, C. I., & Egbue, O. (2014, May). Socio-cultural influences on technology adoption and sustainable development. In Proceedings of the Industrial and Systems Engineering Research Conference, Montreal, Canada (pp. 2711-2717).

Agüero-Rodríguez, J. C., Tepetla-Montes, J., & Torres-Beristaín, B. (2015). Producción de biocombustibles a partir de la caña en Veracruz, México: perspectivas y riesgos socio-ambientales. CienciaUAT, 9(2), 74-84.

Corona, B., Ruiz, D., & San Miguel, G. (2016). Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies, 9(6), 413. https://doi.org/10.3390/en9060413

Huesca-Pérez, M. E., Sheinbaum-Pardo, C., & Köppel, J. (2016). Social implications of siting wind energy in a disadvantaged region–The case of the Isthmus of Tehuantepec, Mexico. Renewable and Sustainable Energy Reviews, 58, 952-965. https://doi.org/10.1016/j.rser.2015.12.310.

Juárez-Hernández, S., & León, G. (2014). Energía eólica en el istmo de Tehuantepec: desarrollo, actores y oposición social. Problemas del desarrollo, 45(178), 139-162. https://doi.org/10.1016/S0301-7036(14)70879-X.

Pasqualetti, M. J., & Brown, M. A. (2014). Ancient discipline, modern concern: Geographers in the field of energy and society. Energy Research & Social Science, 1, 122-133. https://doi.org/10.1016/j.erss.2014.03.016.

Skutsch, M., De los Rios, E., Solis, S., Riegelhaupt, E., Hinojosa, D., Gerfert, S., & Masera, O. (2011). Jatropha in Mexico: environmental and social impacts of an incipient biofuel program. Ecology and Society, 16(4). https://doi.org/10.5751/ES-04448-160411.

Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H. (2020). State of the research in community resilience: Progress and challenges. Sustainable and resilient infrastructure, 5(3), 131-151. https://doi.org/10.1080/23789689.2017.1418547.

Arbon, P., K. Gebbie, L. Cusack, S. Perera, and S. Verdonk, (2012). Developing a Model and Tool to Measure Community Disaster Resilience: Final Report October 2012. Adelaide, Australia: Torrens Resilience Institute. URL: https://www.flinders.edu.au/content/dam/documents/research/torrens-resilience-institute/community-resilience-report-toolkit.pdf

Arciniega, J. D. D. U. (2010). La resiliencia comunitaria en situaciones catastróficas y de emergencia. International journal of developmental and educational psychology, 1(1), 687-693.

Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring capacities for community resilience. Social indicators research, 99(2), 227-247. https://doi.org/10.1007/s11205-010-9576-9.

Fitzpatrick, T., (2016). Community Disaster Resilience, Disasters and Public Health (57-85). Melbourne, Australia: Elsevier Inc. https://doi.org/10.1016/B978-0-12-801980-1.00003-9.

Obrist, B., Pfeiffer, C., & Henley, R. (2010). Multi‐layered social resilience: A new approach in mitigation research. Progress in Development Studies, 10(4), 283-293. https://doi.org/10.1177/146499340901000402.

Wolsink, M. (2018). Social acceptance revisited: gaps, questionable trends, and an auspicious perspective. Energy research & social science, 46, 287-295. https://doi.org/10.1016/j.erss.2018.07.034.

Wolsink, M. (2012). Undesired reinforcement of harmful ‘self-evident truths’ concerning the implementation of wind power. Energy Policy, 48, 83-87. https://doi.org/10.1016/j.enpol.2012.06.010.

Scott, W., (2008). Institutions and Organizations: Ideas and Interests, 3rd ed. Los Angeles, CA.: Sage Publications.

Wolsink, M. (2010). Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities. Environmental Impact Assessment Review, 30(5), 302-311. https://doi.org/10.1016/j.eiar.2010.01.001.

Breukers, S., & Wolsink, M. (2007). Wind energy policies in the Netherlands: Institutional capacity-building for ecological modernisation. Environmental Politics, 16(1), 92-112. https://doi.org/10.1080/09644010601073838.

Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy policy, 35(5), 2683-2691. https://doi.org/10.1016/j.enpol.2006.12.001.

Wolsink, M. (2012). The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renewable and Sustainable Energy Reviews, 16(1), 822-835. https://doi.org/10.1016/j.rser.2011.09.006.

Wolsink, M. (2020). Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids. Renewable and Sustainable Energy Reviews, 127, 109841. https://doi.org/10.1016/j.rser.2020.109841.

Urmee, T., & Md, A. (2016). Social, cultural and political dimensions of off-grid renewable energy programs in developing countries. Renewable Energy, 93, 159-167. https://doi.org/10.1016/j.renene.2016.02.040.

Camagni, R., Capello, R., & Nijkamp, P. (1998). Towards sustainable city policy: an economy-environment technology nexus. Ecological economics, 24(1), 103-118. https://doi.org/10.1016/S0921-8009(97)00032-3.

Van Der Schoor, T., & Scholtens, B. (2015). Power to the people: Local community initiatives and the transition to sustainable energy. Renewable and sustainable energy reviews, 43, 666-675. https://doi.org/10.1016/j.rser.2014.10.089.

Scotti, I., & Minervini, D. (2017). Performative connections: translating sustainable energy transition by local communities. Innovation: The European Journal of Social Science Research, 30(3), 350-364. https://doi.org/10.1080/13511610.2016.1237282.

Haggett, C., & Aitken, M. (2015). Grassroots energy innovations: The role of community ownership and investment. Current Sustainable/Renewable Energy Reports, 2(3), 98-104. https://doi.org/10.1007/s40518-015-0035-8.

Müggenburg, H., Tillmans, A., Schweizer-Ries, P., Raabe, T., & Adelmann, P. (2012). Social acceptance of PicoPV systems as a means of rural electrification—A socio-technical case study in Ethiopia. Energy for Sustainable Development, 16(1), 90-97. https://doi.org/10.1016/j.esd.2011.10.001.

Walker, G., Devine-Wright, P., Hunter, S., High, H., & Evans, B. (2010). Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy. Energy policy, 38(6), 2655-2663. https://doi.org/10.1016/j.enpol.2009.05.055.

Pfister, T., Suhari, M., & Glück, S. (2016). Energy, society, and culture–transforming the order of energy (part I). Innovation: The European Journal of Social Science Research, 29(3), 219-221. https://doi.org/10.1080/13511610.2016.1204535.

Warner, M. E. (2008). Reversing privatization, rebalancing government reform: Markets, deliberation and planning. Policy and society, 27(2), 163-174. https://doi.org/10.1016/j.polsoc.2008.09.001.

Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., & Herder, P. M. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722-744. https://doi.org/10.1016/j.rser.2015.11.080.

Fast, S. (2013). Social acceptance of renewable energy: Trends, concepts, and geographies. Geography Compass, 7(12), 853-866. https://doi.org/10.1111/gec3.12086.

Jasanoff, S., & Kim, S. H. (2013). Sociotechnical imaginaries and national energy policies. Science as culture, 22(2), 189-196. https://doi.org/10.1080/09505431.2013.786990.

Laufer, D., & Schäfer, M. (2011). The implementation of Solar Home Systems as a poverty reduction strategy—A case study in Sri Lanka. Energy for sustainable Development, 15(3), 330-336. https://doi.org/10.1016/j.esd.2011.07.002.

Betakova, V., Vojar, J., & Sklenicka, P. (2015). Wind turbines location: How many and how far?. Applied Energy, 151, 23-31. https://doi.org/10.1016/j.apenergy.2015.04.060.

Pasqualetti, M. J., & Schwartz, C. (2011). Siting solar power in Arizona: a public value failure? In: Devine-Wright, P. (ed.) Siting solar power in Arizona: a public value failure? Earthscan, London. From NIMBY to participation, 167-185.

Wolsink, M. (2007). Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’. Renewable and sustainable energy reviews, 11(6), 1188-1207. https://doi.org/10.1016/j.rser.2005.10.005.

Phadke, R. (2011). Resisting and reconciling big wind: middle landscape politics in the New American West. Antipode, 43(3), 754-776. https://doi.org/10.1111/j.1467-8330.2011.00881.x.

Gee, K. (2010). Offshore wind power development as affected by seascape values on the German North Sea coast. Land use policy, 27(2), 185-194. https://doi.org/10.1016/j.landusepol.2009.05.003.

Haggett, C. (2011). Understanding public responses to offshore wind power. Energy Policy, 39(2), 503-510. https://doi.org/10.1016/j.enpol.2010.10.014.

Gross, C. (2007). Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance. Energy policy, 35(5), 2727-2736. https://doi.org/10.1016/j.enpol.2006.12.013.

Jobert, A., Laborgne, P., & Mimler, S. (2007). Local acceptance of wind energy: Factors of success identified in French and German case studies. Energy policy, 35(5), 2751-2760. https://doi.org/10.1016/j.enpol.2006.12.005

Breukers, S., & Wolsink, M. (2007). Wind power implementation in changing institutional landscapes: An international comparison. Energy policy, 35(5), 2737-2750. https://doi.org/10.1016/j.enpol.2006.12.004.

Van der Horst, D. (2007). NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policy, 35(5), 2705-2714. https://doi.org/10.1016/j.enpol.2006.12.012.

Maruyama, Y., Nishikido, M., & Iida, T. (2007). The rise of community wind power in Japan: Enhanced acceptance through social innovation. Energy Policy, 35(5), 2761-2769. https://doi.org/10.1016/j.enpol.2006.12.010.

Sauter, R., & Watson, J. (2007). Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy, 35(5), 2770-2779. https://doi.org/10.1016/j.enpol.2006.12.006.

Huijts, N. M., Midden, C. J., & Meijnders, A. L. (2007). Social acceptance of carbon dioxide storage. Energy policy, 35(5), 2780-2789. https://doi.org/10.1016/j.enpol.2006.12.007.

Troncoso, K., Castillo, A., Masera, O., & Merino, L. (2007). Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico. Energy policy, 35(5), 2799-2810. https://doi.org/10.1016/j.enpol.2006.12.011.

Mallett, A. (2007). Social acceptance of renewable energy innovations: The role of technology cooperation in urban Mexico. Energy policy, 35(5), 2790-2798. https://doi.org/10.1016/j.enpol.2006.12.008.

International Energy Agency IEA, (2016). Mexico Energy Outlook. Paris, France: IEA. URL: https://iea.blob.core.windows.net/assets/e911d7c8-955a-4495-ace0-da85ac4484f9/MexicoEnergyOutlook.pdf

Secretaría de Energía SENER, (2013). Prospectiva de Energías Renovables 2013-2027. México: SENER. URL: https://www.gob.mx/cms/uploads/attachment/file/62948/Prospectiva_de_Energ_as_Renovables_2013-2027.pdf

OECD, (1993). OECD Core Set of Indicators for Environmental Performance Reviews - A synthesis report by the Group on the State of the Environment. Environment Monographs 83, 1–39. URL: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=OCDE/GD(93)179&docLanguage=En

Huang, L., Wu, J., & Yan, L. (2015). Defining and measuring urban sustainability: a review of indicators. Landscape ecology, 30(7), 1175-1193. https://doi.org/10.1007/s10980-015-0208-2.

Morse, S. (2015). Developing sustainability indicators and indices. Sustainable Development, 23(2), 84-95. https://doi.org/10.1002/sd.1575

United Nations, (2007). Indicators of Sustainable Development: Guidelines and Methodologies. New York, USA: United Nations. URL: https://sustainabledevelopment.un.org/content/documents/guidelines.pdf

Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological indicators, 9(2), 189-212. https://doi.org/10.1016/j.ecolind.2008.05.011.

Van de Kerk, G., & Manuel, A. R. (2008). A comprehensive index for a sustainable society: The SSI—the Sustainable Society Index. Ecological Economics, 66(2-3), 228-242. https://doi.org/10.1016/j.ecolecon.2008.01.029.

U.S. Department of Energy. Transparent Cost Database. LCOE. https://openei.org/apps/TCDB/.

NREL, (2020). Annual Technology Baseline. Electricity Data Overview. [Online]. Available: https://atb-archive.nrel.gov/electricity/2020/

García, E. R. S., & Morales-Acevedo, A. (2014). Optimizing the energy portfolio of the Mexican electricity sector by 2050 considering CO2eq emissions and life cycle assessment. Energy Procedia, 57, 850-859. https://doi.org/10.1016/j.egypro.2014.10.294.

Pasqualetti, M. J. (2011). Social barriers to renewable energy landscapes. Geographical review, 101(2), 201-223. https://doi.org/10.1111/j.1931-0846.2011.00087.x

IMCO, (2016). México: Anatomía de la corrupción. [Online]. Available: https://imco.org.mx/wp-content/uploads/2016/10/2016-Anatomia_Corrupcion_2-Documento.pdf

Programa de las Naciones Unidas para el Desarrollo, PNUD. (2019). Informe de Desarrollo Humano Municipal 2010-2015. Transformando México desde lo local. Ciudad de México, México: PNUD. URL: http://www.mx.undp.org/content/mexico/es/home/library/poverty/informe-de-desarrollo-humano-municipal-2010-2015--transformando-.html

Huber Bernal, G., & Mungaray Lagarda, A. (2017). Competitiveness indices in Mexico. Gestión y política pública, 26(1), 167-218. URL: http://www.scielo.org.mx/pdf/gpp/v26n1/1405-1079-gpp-26-01-00167.pdf

Guadalupe Vargas-Hernandez, J., & Bautista Ramirez, M. L. (2016). Bussines structure and competitiveness in Mexico. 3C EMPRESA, 5(3), 24-51. https://doi.org/10.17993/3cemp.2016.050327.24-51.

Centro Nacional de Control de Energía CENACE, (2020). Informe de la Tecnología de Generación de Referencia. Ciudad de México, México: CENACE. URL: https://www.cenace.gob.mx/Docs/02_MBP/InformeTGR/2020/Informe%20TGR%20en%202020%20Preliminar%20(v2020-11-23).pdf

SENER, (2021). Sistema de Información Energética | Generación bruta por tecnología. [Online]. Available: https://sie.energia.gob.mx/bdiController.do?action=cuadro&cvecua=IIIA1C05

SENER, (2020). Anexo II. Reporte de avance de enegías limpias, Mexico City. [Online]. Available: https://www.gob.mx/cms/uploads/attachment/file/610964/Cap10__Marco_Juri_dico_Reporte_Avance_de_Energi_as_Limpias_WEB.pdf

Cómo citar
Pérez-Denicia, E., Fernández-Luqueño, F. ., & Vilariño-Ayala, D. . (2021). Análisis de viabilidad para la generación eléctrica a través de fuentes renovables: hacia la producción de energía sustentable. CT&F - Ciencia, Tecnología Y Futuro, 11(1), 109–122. https://doi.org/10.29047/01225383.260

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-06-30
Sección
Artículos de investigación científica y tecnológica

Métricas

QR Code