Simulación de procesos termoquímicos en Aspen Plus como herramienta para el análisis de biorrefinerías

Palabras clave: Biomasa, Simulación, Gasificación, Pirolisis, Reacciones, Aspen Plus

Resumen

El desarrollo de herramientas para la síntesis, diseño y optimización de biorrefinerías requiere un conocimiento profundo de los procesos termoquímicos involucrados en estos esquemas. En el presente trabajo se implementaron tres modelos de la literatura científica para simular por medio de Aspen PlusTM los procesos: pirólisis rápida en lecho fluidizado, gasificación en lecho fijo y lecho fluidizado. Estos modelos permiten obtener parámetros de desempeño, consumo y costo que son necesarios para el diseño y optimización de esquemas de biorrefinerías. El modelo de pirólisis rápida incluye una descripción detallada de la descomposición de la biomasa y la cinética del proceso (149 reacciones). El proceso de gasificación en lecho fijo, integra siete reacciones que modelan el proceso en dos reactores de equilibrio que minimizan la energía libre de Gibbs. El modelo utilizado para la gasificación en lecho fluidizado tiene en cuenta tanto parámetros hidrodinámicos como cinéticos, así como un modelo cinético que considera el cambio en la velocidad de reacción de combustión de la biomasa con oxígeno con respecto al cambio de temperatura. Debido a la complejidad y el detalle de todos estos modelos, se emplearon subrutinas de FORTRAN y macros iterativas de Excel vinculadas al Aspen PlusTM. Finalmente, los resultados de cada simulación fueron validados con los artículos base y con resultados experimentales de la literatura.

Biografía del autor/a

Valentina Sierra Jimenez, Universidad Nacional de Colombia

Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia

Carlos M. Ceballos Marín, Universidad de la Guajira, Universidad Nacional de Colombia

Ingeniero Químico, Magister en Ingeniería Química y Candidato a Ph.D. en Ingeniería - Sistemas Energéticos.

  • Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia
  • Universidad de la Guajira, Facultad de ingeniería, Riohacha, Colombia
Farid Chejne Janna, Profesor Titular

Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia

Referencias bibliográficas

Seifi, S. & D. Crowther, (2016). Managing with Depleted Resources", Corporate Responsibility and Stakeholding (Developments in Corporate Governance and Responsibility), 10,(67–86). https://doi.org/10.1108/S2043-052320160000010005 .

UPME, Unidad de Planeación Minero Energética. (2014). Plan De Expansion De Referencia Generacion - Transmisión, 2015-2029 Unidad de Planeación Minero Energética. Recuperado de: https://www1.upme.gov.co/Energia_electrica/Planes-expansion/Plan-Expansion-20152029/Plan_GT_2015-2029_VF_22-12-2015.pdf

UPME, Unidad de Planeación Minero Energética. (2015). Plan Energético Nacional Colombia: Ideario Energético 2050. Recuperado de: https://www1.upme.gov.co/Documents/PEN_IdearioEnergetico2050.pdf

Burger, B., Kiefer, K., Kost, C., Nold, S., Philipps, S., Preu, R., ... & Willeke, G. (2014). Photovoltaics Report 2014. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 24.

British Petroleum, (2020). Energy Outlook 2020 edition, Energy Outlook 2020 edition. [Online]. recuperado de: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf?utm_%20source=newsletter&utm_medium=email&utm_%20campaign=newsletter_axiosgenerate&stream=top

Joint Research Centre, (2020). State of the Art on Alternative Fuels Transport Systems in the European Union - Update 2020 - Well-to-Wheels analysis of future automotive fuels and powertrains in the European context, (February). doi: https://doi.org/10.2771/29117

Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource technology, 299, 122585. https://doi.org/10.1016/j.biortech.2019.122585

Ubando, A. T., Del Rosario, A. J. R., Chen, W. H., & Culaba, A. B. (2021). A state-of-the-art review of biowaste biorefinery. Environmental Pollution, 269, 116149. https://doi.org/10.1016/j.envpol.2020.116149

Perea-Moreno, M. A., Samerón-Manzano, E., & Perea- Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability, 11(3), 863. https://doi.org/10.3390/su11030863

Sher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266. https://doi.org/10.1016/j.enconman.2019.112266

Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., ... & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134, 110335. https://doi.org/10.1016/j.rser.2020.110335

Zheng, Y., Jenkins, B. M., Kornbluth, K., & Træholt, C. (2018). Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage. Renewable energy, 123,(204-217). https://doi.org/10.1016/j.renene.2018.01.120 .

Valdés, C. F., Chejne, F., Marrugo, G., Macias, R. J., Gómez, C. A., Montoya, J. I., ... & Arenas, E. (2016). Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process. Applied Thermal Engineering, 107,(1201-1209). https://doi.org/10.1016/j.applthermaleng.2016.07.086

Granados, D. A., Basu, P., Nhuchhen, D. R., & Chejne, F. (2019). Investigation into torrefaction kinetics of biomass and combustion behaviors of raw, torrefied and char samples. Biofuels, 633-643. https://doi.org/10.1080/17597269.2018.1558837

Osorio, J., & Chejne, F. (2019). Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste and Biomass Valorization, 10(1), 187-195. https://doi.org/10.1007/s12649-017-0025-8

Valdés, C. F., Marrugo, G. P., Chejne, F., Marin- Jaramillo, A., Franco-Ocampo, J., & Norena-Marin, L. (2020). Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management. Waste Management, 101, 54-65. https://doi.org/10.1016/j.wasman.2019.09.037

Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. https://doi.org/10.1016/j.rser.2014.07.129

Zhao, S., & Luo, Y. (2020). Multiscale Modeling of Lignocellulosic Biomass Thermochemical Conversion Technology: An Overview on the State-of-the-Art. Energy & Fuels, 34(10), 11867-11886. https://doi.org/10.1021/acs.energyfuels.0c02247

Kanatlı, T. K., & Ayas, N. (2021). Simulating the steam reforming of sunflower meal in Aspen Plus. International Journal of Hydrogen Energy (57), 29076-29087. https://doi.org/10.1016/j.ijhydene.2020.12.195

Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of cleaner production, 231, 254-267. https://doi.org/10.1016/j.jclepro.2019.05.094

Manual, A. P. (2001). Physical property systems, physical property methods and models 11.1. Aspen Technology Inc.

Ahmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Azlina, W. W. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623- 1644. https://doi.org/10.1016/j.rser.2015.07.125

Hernández, J. J., Aranda-Almansa, G., & Bula, A. (2010). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91(6), 681-692. https://doi.org/10.1016/j.fuproc.2010.01.018

Guo, Q., Chen, X., & Liu, H. (2012). Experimental research on shape and size distribution of biomass particle. Fuel, 94, 551-555. https://doi.org/10.1016/j.fuel.2011.11.041

Abba, I. A., Grace, J. R., Bi, H. T., & Thompson, M. L. (2003). Spanning the flow regimes: Generic fluidized‐bed reactor model. AIChE Journal, 49(7), 1838-1848. https://doi.org/10.1002/aic.690490720

Yates, J. G., (1988). Gas fluidization technology, The Chemical Engineering Journal 37(2), 134–135. https://doi.org/10.1016/0300-9467(88)80042-X

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048

Bridgwater, T., (2018). Challenges and opportunities in fast pyrolysis of biomass: Part I, Johnson Matthey Technology Review., 62(1), 118–130. https://doi.org/10.1595/205651318X696693

Guda, V. K., P. H. Steele, V. K. Penmetsa, & Q. Li, (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology, In Recent Advances in Thermochemical Conversion of Biomass, Elsevier Inc., 177–211. https://doi.org/10.1016/B978-0-444-63289-0.00007-7

Peters, J. F., Banks, S. W., Bridgwater, A. V., & Dufour, J. (2017). A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied energy, 188, 595-603. https://doi.org/10.1016/j.apenergy.2016.12.030

Peters, J. F., (2015). Pyrolysis for biofuels or biochar? A thermodynamic, environmental and economic assessment, Ph.D. Thesis., Universidad Rey Juan Carlos.

Faravelli, T., A. Frassoldati, G. Migliavacca, & E. Ranzi, (2010). Detailed kinetic modeling of the thermal degradation of lignins, Biomass and Bioenergy, 34(3), 290–301. https://doi.org/10.1016/j.biombioe.2009.10.018

Wen, C. Y. & Y. H. Yu, (1966). A generalized method for predicting the minimum fluidization velocity, AIChE Journal, 12 (3), 610–612. https://doi.org/10.1002/aic.690120343

Nikoo, M. B. & N. Mahinpey, (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS, Biomass and Bioenergy, 32(12), 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020

Suwatthikul, A., S. Limprachaya, P. Kittisupakorn, & I. M. Mujtaba, (2017). Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition, Energies, 10(3), 1–15. https://doi.org/10.3390/en10030314

Puig-Gamero, M., Pio, D. T., Tarelho, L. A. C., Sánchez, P., & Sanchez-Silva, L. (2021). Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®. Energy Conversion and Management, 235, 113981. https://doi.org/10.1016/j.enconman.2021.113981

Jain, A. A., Mehra, A., & Ranade, V. V. (2018). Modeling and simulation of a fluidized bed gasifier. Asia‐Pacific Journal of Chemical Engineering, 13(1), e2155. https://doi.org/10.1002/apj.2155

Daizo, K. and O. Levenspiel, (1991). Fluidization engineering, 2nd edition. Stoneham, MA (United States); Butterworth Publishers.

Babu, S. P., B. Shah, & A. Talwalkar, (1978). Fluidization correlations for coal gasification materials - minimum fluidization velocity and fluidized bed expansion ratio., AIChE Symp Ser, 74(176), 176–186.

Yan, H. M., C. Heidenreich, & D. K. Zhang, (1998). Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of “net flow,” Fuel, 77(9–10), 1067–1079. https://doi.org/10.1016/S0016-2361(98)00003-9

Rajan, R. R. & C. Y. Wen, (1980). A comprehensive model for fluidized bed coal combustors, AIChE Journal., 26(4), 642–655. https://doi.org/10.1002/aic.690260416

Matsui, I., D. Kunii, & T. Furusawa, (1985). Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics, Journal of chemical engineering of Japan, 18 (2), 105–113. https://doi.org/10.1252/jcej.18.105

Harris, D. J. and D. G. Roberts, (2013). Coal gasification and conversion, in The Coal Handbook: Towards Cleaner Production 2 (427–454), Elsevier Inc. https://doi.org/10.1533/9781782421177.3.427

Muslim, M. B., S. Saleh, & N. A. F. A. Samad, (2017). Effects of purification on the hydrogen production in biomass gasification process, Chemical. Engineering. Transaction., 56, 1495–1500.

Acevedo, J. C., Posso, F. R., Durán, J. M., & Arenas,E. (2018, November). Simulation of the gasification process of palm kernel shell using Aspen PLUS. In Journal of Physics: Conference Series (Vol. 1126, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1742-6596/1126/1/012010

Moshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13. https://doi.org/10.1080/15567036.2020.1806404

Montoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., ... & Acero, J. (2015). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379-387. https://doi.org/10.1016/j.jaap.2014.11.007

Nayaggy, M., & Putra, Z. A. (2019). Process simulation on fast pyrolysis of palm kernel shell for production of fuel. Indonesian Journal of Science and Technology, 4(1), 64-73. https://doi.org/10.17509/ijost.v4i1.15803

Islam, M. N., Zailani, R., & Ani, F. N. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renewable Energy, 17(1), 73-84. https://doi.org/10.1016/S0960-1481(98)00112-8

Phyllis2 - Database for the physico-chemical composition of (treated) lignocellulosic biomass, micro-and macroalgae, various feedstocks for biogas production and biochar. [Online]. recuperado de: https://phyllis.nl/ .

Cómo citar
Sierra Jimenez, V., Ceballos Marín, C. . M., & Chejne Janna, F. (2021). Simulación de procesos termoquímicos en Aspen Plus como herramienta para el análisis de biorrefinerías. CT&F - Ciencia, Tecnología Y Futuro, 11(2), 27–38. https://doi.org/10.29047/01225383.372

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-12-27
Sección
Artículos de investigación científica y tecnológica

Métricas

QR Code