Mathematical model for refinery furnaces simulation

  • Fabian A. Díaz Mateus Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Jesús A. Castro Gualdrón Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
Palabras clave: hornos, simulación, modelos matemáticos, refinería de petróleo

Resumen

En este trabajo se presenta el desarrollo de un modelo matemático para simulación de hornos de refinería, el cual consiste en dos sub-modelos diferenciados, uno para simular el lado proceso y otro para simular el gas de combustión. El lado proceso es apropiadamente modelado con un perfil de velocidad plano debido a la alta velocidad del fluido dentro de los tubos. El lado gas de combustión está compuesto por una cámara de radiación y una sección de convección, ambas unidas por una zona de tubos de choque. Los dos sub-modelos interactúan a través de la temperatura de superficie de los tubos, siendo esta un dato de entrada al sub-modelo del lado gas de combustión y es re-calculada por el sub-modelo del lado proceso. Este procedimiento es ejecutado en un ciclo iterativo hasta que cierta tolerancia es alcanzada. Este modelo matemático ha demostrado ser una herramienta muy útil para el análisis y simulación de hornos. 

Referencias bibliográficas

Aladwani, H. A., & Riazi, M. R. (2005). Some guidelines for choosing a characterization method for petroleum fractions in process simulators. Chem. Eng. Res. Des. 83, 160-162. https://doi.org/10.1205/cherd.03338

API Standard 530 (2001). Annex B, Calculation of maxi mum radiant section tube skin temperature, American Petroleum Institute.

API TDB (1997). Technical Data Book-Petroleum Refining. American Petroleum Institute, 6th edition.

Awad, M. M., & Muzychka Y. S. (2005). Bounds on two phase flow. Part 2. Void fraction on circular pipes, ASME Inter. Mechanical Eng.Congress and Exposition. Orlando, Fl., USA, 823-833. https://doi.org/10.1115/IMECE2005-81543

Beattie, D. R., & Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. Int. J. Mul tiphase Flow, (8), 83-87. https://doi.org/10.1016/0301-9322(82)90009-X

Briggs, D. E., & Young, E. H. (1963). Convection heat transfer and pressure drop of air flowing across triangu lar pitch banks of finned tubes. Chem. Eng. Prog. Symp. Ser., 59: 1-10.

Bromley, L. A., & Wilke, C. R. (1951). Viscosity behavior of gases, Ind. Eng. Chem., 43, 1641-1648. https://doi.org/10.1021/ie50499a046

Chato, J. C., Yashar, D. A., Wilson, M. J., Kopke, H. R., Graham, D. M., & Newell, T. A. (2001). An Investiga tion of Refrigerant Void Fraction in Horizontal, Microfin Tubes. Inter. J. of HVAC& Research, 7(1), 67 - 82. https://doi.org/10.1080/10789669.2001.10391430

Coddington, P., & Macian, R. (2002). A study of the perfor mance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl. Eng. Des., 149: 323 - 333.

Dean, D. E., & Stiel, L. I. (1965). The viscosity of nonpolar gas mixtures at moderate and high pressures. AIChE J., 11: 526-532. https://doi.org/10.1002/aic.690110330

Detemmerman, T., & Froment, F. (1998). Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons. Revue de l'institut français du pétrole, 53 (2), 181 - 194. https://doi.org/10.2516/ogst:1998017

Díaz, Fabian A. (2008). Desenvolvimento de Modelo Com putacional para Craqueamento Térmico, M. Sc. Thesis dissertation, Universidade estadual de Campinas, UNI CAMP, Campinas, Brazil, 138pp.

Díaz, Fabian A., Wolf Maciel M. R., Sugaya M. F., Maciel Filho R., & Costa C. B. B. (2008). Furnace modeling and simulation for the thermal cracking of heavy petroleum fractions. XVII Congresso brasileiro de engenharia qui mica, COBEQ, Recife, Brazil.

ESCOA (2002). Engineering Manual, version 2.1.

García, F., García, J. M., García, R., & Joseph, D. D. (2007). Friction factor improved correlations for laminar and turbulent gas-liquid flow in horizontal pipelines. Int. J. Multiphase Flow, 33 (12), 1320-1336. https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.003

Gnielinski, V., Zukauskas, A., & Skrinska, A. (1983). Banks of plain and finned tubes. Heat Exchanger Design Hand book, Hemisphere, New York.

Grimson, E. D. (1938). Heat transfer and flow resistance of gases over tube banks. Transaction ofASME. (58), 381-392.

Hankinson, R., & Thomson, G. (1979). A new correlation for saturated densities of liquids and their mixtures. AIChE J. 25 (4), 653-663. https://doi.org/10.1002/aic.690250412

Heynderickx, Geraldine J., Oprins, Arno J. M., & and Marin, Guy B. (2001). Three-Dimensional Flow Patterns in Cracking Furnaces with Long-Flame Burners. AIChE J. 47 (2), 388 - 400. https://doi.org/10.1002/aic.690470215

Hottel, Hoyt C. (1974). First estimates of industrial furnace performance-the one-gas-zone model re-examined. Heat Transfer in Flames, 5-28.

Hughmark, G. A. (1962). Holdup in gas-liquid flow. Chem. Eng. Prog, 53 (4), 62 - 65.

Joo, E., Lee, K., Lee, M. & Park, S. (2000). CRACKER - A PC based simulator for Industrial cracking furnaces. Computers and Chemical Engineering. 24: 1523-1528.

https://doi.org/10.1016/S0098-1354(00)00558-5

Kendall, J. & Monroe, K. P. (1917). The viscosity of liquids. 2. The viscosity composition curve for ideal liquid mix tures. J. American Chemical Society, 39 (9), 1787-1802. https://doi.org/10.1021/ja02254a001

Khan, W. A., Culham, J.R. & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. Int. J. of thermophysics and heat transfer, 49 (25-26), 4831-4838. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.042

Kim, J. & Ghajar, A. J. (2006). A general heat transfer cor relation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes. Int. J. Multiphase Flow, 32, 447- 465. https://doi.org/10.1016/j.ijmultiphaseflow.2006.01.002

Lee, B.I. & Kesler, M. G. (1975). A generalized thermody namic correlation based on three-parameter correspond ing states. AIChE J.,Vol. 21 (3), 510-527.

https://doi.org/10.1002/aic.690210313

Maciel Filho, R. & Sugaya, M. F. (2001). A computer aided tool for heavy oil thermal cracking process simulation. Computers and Chemical Engineering. 25: 683 - 692. https://doi.org/10.1016/S0098-1354(01)00669-X

Niaei, A., Towfighi, J., Sadrameli, S. M. & Karimzadeh, R. (2004) The combined simulation of heat transfer and py rolysis reactions in industrial cracking furnaces. Applied Thermal Engineering. 24: 2251 - 2265. https://doi.org/10.1016/j.applthermaleng.2004.01.016

Olujic, Z. (1985). Predicting two-phase-flow friction loss in horizontal pipes, Chem. Eng., 92 (13), 45 - 50.

Rachford, H. H. & Rice, J. D. (1952). Procedure for Use of Electrical Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium, J. of Petroleum Technology, 4, s.1, 19, s.2, 3. https://doi.org/10.2118/952327-G

Riazi, M. R. & Daubert, T. E. (1987). Characterization pa rameters for petroleum fractions. Ind. Eng. Chem. Res, 26 (4), 755-759. https://doi.org/10.1021/ie00064a023

Rouhani, Z. & Axelsson, E. (1970). Calculation of volume void fraction in the subcooled and quality region. Int. J. Heat Mass Transfer, 13, 383 - 393. https://doi.org/10.1016/0017-9310(70)90114-6

Spencer, C. F. & Danner, R. P.(1973). Prediction of Bubble Point Density of Mixtures. J. Chem. Eng. Data, 18 (2): 230. https://doi.org/10.1021/je60057a007

Stehlík, P., Kohoutek, J. & Jebácek, V. (1996) Simple math ematical model of furnaces and its possible applications. Comp. Chem. Eng., 20 (11), 1369 -1372.

https://doi.org/10.1016/0098-1354(95)00252-9

Stiel, L. I., & Thodos, G. (1961). The viscosity of nonpolar gases at normal pressures. AIChE J., 7: 611- 615. https://doi.org/10.1002/aic.690070416

Twu, Chorng H. (1984). An internally consistent correla tion for predicting the critical properties and molecular weights of petroleum and coal-tar liquids. Fluid phase equilibria, 16 (2), 137-150. https://doi.org/10.1016/0378-3812(84)85027-X

Twu, Chorng H. (1985). Internally consistent correlation for predicting liquid viscosities of petroleum fractions. Ind. Eng. Chem. Process. Des. Dev., 24: 1287-1293.

https://doi.org/10.1021/i200031a064

Weierman, C. (1976). Correlations ease the selection of finned tubes, Oil and Gas J., 74 (36), 94-100.

Woldesemayat, M. A. & Ghajar, A. J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiphase Flow, 33, 347 - 370. https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.004

Zukauskas, A. (1972). Heat transfer from tubes in Cross Flow. Advances in heat transfer, 8, 93 - 160. https://doi.org/10.1016/S0065-2717(08)70038-8

Cómo citar
Díaz Mateus, F. A. ., & Castro Gualdrón, J. A. . (2010). Mathematical model for refinery furnaces simulation. CT&F - Ciencia, Tecnología Y Futuro, 4(1), 89–99. https://doi.org/10.29047/01225383.442

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2010-06-30
Sección
Artículos de investigación científica y tecnológica

Métricas

QR Code