Heat flow in the Colombian Caribbean from the bottom simulating reflector (BSR)

  • Caroll López Universidad Industrial de Santander, Escuela de Geología, Bucaramanga, Santander, Colombia
  • German Y. Ojeda Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
Palabras clave: gas hydrate, bottom simulating reflector (BSR), heat transfer, Caribbean area, Colombia

Resumen

El flujo de calor en zonas con presencia de hidratos de gas puede ser determinado teóricamente a partir de la ocurrencia del reflector simulador de fondo (BSR por su sigla en inglés), el cual ha sido detectado en registros de reflexión sísmica adquirida costa afuera del Caribe Colombiano. Este reflector anómalo, el cual se cree que coincide con la base de la zona de estabilidad de la capa de hidratos de gas, permite estimar un rango de valores de flujo de calor a partir de los diagramas de estabilidad de los hidratos y la correspondiente conductividad termal de los sedimentos. En este estudio se determinó el flujo de calor en el área costa afuera que se extiende desde la alta Guajira hasta el golfo de Urabá con un área interpretada de BSR de aproximadamente 18 000 km2. Así, en estas regiones, el flujo de calor calculado varía de 27, 6 ± 4 para el sector costa afuera de Barranquilla en la zona correspondiente al delta del río Magdalena,
37,9 ±3,6 y 33,2 ± 5,5 mW/m2 para el sector costa afuera de la alta Guajira y Guajira central respectivamente y 34,7 ± 9,4 para el sector costa afuera de Cartagena - Golfo de Urabá. Estos resultados son congruentes con estimaciones obtenidas en el Caribe Sur empleando métodos alternos, los cuales varían entre 30 y 42 mW/m2. Los resultados obtenidos indican un flujo de calor estimado relativamente bajo en relación con otras márgenes continentales. La rápida y contínua sedimentación en el delta del río Magdalena parece disminuir el flujo de calor característico de esta zona. No hay evidencia de calor friccional en el frente de deformación del Caribe Sur. Sin embargo, la zona del golfo de Urabá en Cartagena evidencia la presencia de calor por advección en la cuña de acreción del frente de deformación Caribe Sur.

Referencias bibliográficas

Audemard, F., Machette, M., Cox, J., Dart, R., & Haller, K. (2000). Map and database of quaternary faults in Venezuela and its offshore regions. United States Geological Survey, Open File Report 00-0018. https://doi.org/10.3133/ofr0018

Beauchamp, B. (2004). Natural gas hydrates: myths, facts and issues. Geological Survey of Canada, 336: 751-765. https://doi.org/10.1016/j.crte.2004.04.003

Caicedo, J., & Pinto, N. (2003). Esquemas de explotación de Yacimientos de hidratos de gas, primera aproximación de un modelo matematico para el esquema de despresurización. Tesis de pregrado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander, Bucaramanga, 150pp.

Chand, S., & Minshull, T.A. (2003). Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: A review. Geofluids, 3: 275-289. https://doi.org/10.1046/j.1468-8123.2003.00067.x

Collett, T. (2002). Energy resource potential of natural gas hydrates. AAPG Bulletin, 86 (11), 1971-1992. https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D

Davis, E., Hyndman, R., & Villinger H. (1990). Rates of fluid expulsion across the northern cascadia accretionary prism: contraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res., 95: 8869-8889. https://doi.org/10.1029/JB095iB06p08869

Duque-Caro, H. (1984). Structural style, diapirism, and accretionary episodes of the Sin?-San Jacinto Terrane, Southwestern Caribbean border, in Bonini, W., Hargraves, R., & Shagam R., Eds., The Caribbean South American Plate Boundary and Regional Tectonics. Geological Society of America Memoir, 162: 303-316.

https://doi.org/10.1130/MEM162-p303

Epp, D., Grim, P. J., & Langseth. M. J., Jr. (1970). Heat flow in the Carribean and Gulf of Mexico. J. Geophys. Res., 75: 5655-5669. https://doi.org/10.1029/JB075i029p05655

Ganguly, N., Spence, G.D., Chapman, N.R., & Hyndman R.D. (2000). Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine Geology, 164: 53-68. https://doi.org/10.1016/S0025-3227(99)00126-7

García, M. (1991). Hydrocarbon maturation and clay diagenesis in the Tol? area, Northwestern Colombia. M. Sc Thesis, Department of Geology and Geophysics, University of Wyoming, Wyoming. 154 pp.

Gómez C., & Lesn J. (2000). Recuperación de gas metano en yacimientos de hidratos de gas en la cuenca Colombia como futura fuente de energía. Tesis de pregrado, Ingeniería Química, Universidad Industrial de Santander, Bucaramanga.

Grevemeyer, I., & Villinger, H. (2001). Gas hydrate stability and the assessment of heat flow through continental margins. Geophys. Journal, 145: 647-660. https://doi.org/10.1046/j.0956-540x.2001.01404.x

Hyndman, R.D., & Davis, E.E. (1990). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97: 7025-7041. https://doi.org/10.1029/91JB03061

Kaul, N., Rosenberger, A., & Villinger, H. (2000). Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan. Marine Geology, 164: 37-51. https://doi.org/10.1016/S0025-3227(99)00125-5

Kellogg, J.N., & Bonini, W.E. (1982). Subduction of the Caribbean Plate and basement uplifts in the overriding South American plate. Tectonics, 1: 251-276. https://doi.org/10.1029/TC001i003p00251

Kennett, J., Cannariato, K.G., Hendy, I.L., & Behl, R.J. (2003). Methane hydrates in quaternary climate change: The clathrate gun hypothesis. Geophys., Washington, D.C., 216 pp. https://doi.org/10.1029/054SP

Kvenvolden, K.A. (1988). Methane hydrate - A major reservoir of carbon in the shallow geosphere. Chemical Geology, 71: 41-51. https://doi.org/10.1016/0009-2541(88)90104-0

Kvenvolden, K. A. (1998). A primer on the geological occurrence of gas hydrates, in: J.-P. Henriet, & J. Mienert, (Eds.). Gas hydrates - relevance to world margin stability and climate change. The Geological Society, London, 9-30. https://doi.org/10.1144/GSL.SP.1998.137.01.02

Ladd, J., Truchan, M., Talwani, M., Stoffa, P. L., Buhl, P., Houtz, R., Mauffret, A. & Westbrook G. (1984). Seismic reflection profiles across the southern margin of the Caribbean. Geological Society of America Memoir, 162: 153-159. https://doi.org/10.1130/MEM162-p153

López, C. (2005). Determinación del gradiente geotérmico a partir del reflector simulador de fondo. Tesis de pregrado, Universidad Industrial de Santander, Bucaramanga, 100 pp.

Minshull, T.A., Singh S.C., & Westbrook. (1994). Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform. J. Geophys. Res., 99 (B3): 4715-4734. https://doi.org/10.1029/93JB03282

Minshull, T.A., Bartolome, R., Byrne, S., & Danobeitia, J. (2005). Low heat flow from young oceanic lithosphere at the Middle America Trench off Mexico. Earth and Planetary Science Letters, 239: (1-2), 33-41. https://doi.org/10.1016/j.epsl.2005.05.045

Ojeda, G.Y., Hernandez, R., & Olaya, I.D. (2004). Mud volcanoes on the Seafloor of the Colombian Caribbean Sea: undesirable lumps or exploration tools, Proceedings of the 2nd Technical Convention, Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Bogota, Colombia.

Osadetz, K.G., Jones, F.W., Majorowicz, J.A., Pearson, D. E., & Stasiuk, L. D. (1992). Thermal history of the cordilleran foreland basin in western Canada: A review; in: R. W. Macqueen and D. A. Leckie (Eds.), Foreland Basins and Foldbelts. American Association of Petroleum Geologists Memoir, 55: 259-278.

https://doi.org/10.1306/M55563C10

Shankar, U., Thakur, N.K., & Reddi, S.I. (2004). Estimation of geothermal gradients and heat flow from bottom simulating reflector along the Kerala-Konkan basin of Western Continental Margin of India. Current Science, 87: (2).

Shipley, T.H., M.H. Houston, R.T. Buffler, F.J. Shaub, K.J. Mcmillen, J.W. Ladd, & J.L. Worzel, J.L. (1979). Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. AAPG Bulletin, 63: 2204-2213. https://doi.org/10.1306/2F91890A-16CE-11D7-8645000102C1865D

Sigurdsson, H., Leckie, R.M., Acton, G.D. (1997). Proc. ODP, Init. Repts, 165: College Station, TX, USA.

Tissot, B.P., & Welte, D.H. (1984). Petroleum formation and ocurrente. (2nd. ed.) Springer - Verlog Berlin Heidelberg New York. Tokyo, 458. ISBN 0-387-13281-3.

Townend, J. (1997). Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Marine Geology, 141: 209-220. https://doi.org/10.1016/S0025-3227(97)00073-X

Turcotte, D., & Schubert, G. (1982). Geodynamics. New York: Jhon Wiley and Sons Publications, p. 446.

Turcotte, D., & Schubert, G. (1982). Geodynamics. New York: Jhon Wiley and Son Publications, p.135.

Vohat, P., Sain, K., & Thakur, N.K. (2003). Heat flow and geothermal gradient from a bottom simulating reflector: A case study. Current Science, 85: (9), 1263-1265.

Yamano, M., Uyeda, R.M., Aoki, Y., & Shipley, T.H. (1982). Estimates of heat flow derived from gas hydrates. Geology, 339-343. https://doi.org/10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2

Yuan, T., Hyndman, R.D., Spence G.D., & Desmons, B. (1996). Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope. J. of Geophysical Research, 101: (B6), 13655-13671. https://doi.org/10.1029/96JB00102

Vanneste, M., Poort, J., De Batist M., & Klerkx, J. (2003). Atypical heat-flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone. Marine and Petroleum Geology, 19: 1257-1274. https://doi.org/10.1016/S0264-8172(03)00019-9

Wang, K., Hyndman,R.D., & Davis, E.E. (1993). Thermal effects of sediment thickening and fluid expulsion in accretionary prisms - Model and parameter analysis. J. Geophys. Res., (ISSN 0148-0227), 98: (B6), 9975-9984. https://doi.org/10.1029/93JB00506

Zhang, Y.K. (1993). The thermal blanketing effect of sediments on the rate and amount of subsidence in sedimentary basins formed by extension. Tectonophysics, 218: 297-308. https://doi.org/10.1016/0040-1951(93)90320-J

Cómo citar
López, C., & Ojeda, G. Y. (2006). Heat flow in the Colombian Caribbean from the bottom simulating reflector (BSR). CT&F - Ciencia, Tecnología Y Futuro, 3(2), 29–39. https://doi.org/10.29047/01225383.488

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2006-12-31
Sección
Artículos de investigación científica y tecnológica

Métricas

Crossref Cited-by logo
QR Code