Movilidad urbana sostenible en Estambul: Evaluación económica de los autobuses híbridos eléctricos de pila de combustible en el sistema de metrobús

Palabras clave: Concepto de autobús eléctrico a pilas; Control del rendimiento empresarial; Estimación de costos; Modelización e integración empresarial; Análisis, Concepto de autobús eléctrico híbrido a pilas de combustible; Transporte público

Resumen

A medida que las ciudades crecen y se vuelven más pobladas, aumenta la demanda de transporte público, debido a la necesidad de las autoridades de ampliar sus capacidades de transporte. Sin embargo, el mayor uso de vehículos puede causar impactos ambientales como la contaminación atmosférica, las emisiones de gases de efecto invernadero y el ruido. Para hacer frente a estos problemas, los gobiernos y otras partes interesadas buscan sistemas o tecnologías de transporte alternativos. El objetivo de este trabajo es investigar la viabilidad financiera del uso de autobuses híbridos-eléctricos de pila de combustible como sistema de transporte alternativo para el sistema Metrobús de Estambul. El análisis se realiza utilizando el método del periodo de retorno, que evalúa los costes y beneficios de un proyecto a lo largo de su vida útil. El estudio compara los costes totales de explotación del uso de autobuses híbridos-eléctricos de pila de combustible con los autobuses diésel y eléctricos de batería. El estudio concluye que los autobuses híbridos-eléctricos de pila de combustible pueden reducir los costes totales de explotación en un 81,1% en comparación con los autobuses diésel y en un 56,3% en comparación con los autobuses eléctricos de batería. Este análisis sugiere que los autobuses híbridos-eléctricos de pila de combustible ofrecen un valor añadido tras un periodo aproximado de 9 años. Los resultados de este estudio son significativos porque pueden ayudar a las partes interesadas a tomar decisiones informadas sobre la viabilidad financiera de los sistemas de transporte alternativos. Además, el modelo o enfoque financiero utilizado en este estudio puede ser útil para comprender cómo pueden financiarse los sistemas de transporte público en el futuro.

Referencias bibliográficas

Ajanovic, A., Glatt, A., & Haas, R. (2021). Prospects and impediments for hydrogen fuel cell buses. Energy, 235, 121340. https://doi.org/10.1016/j.energy.2021.121340

Ally, J., & Pryor, T. (2016). Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study. Energy Policy, 94, 285-294. https://doi.org/10.1016/j.enpol.2016.03.039

Al-Saadi, M., Mathes, M., Käsgen, J., Robert, K., Mayrock, M., Mierlo, J. V., & Berecibar, M. (2022). Optimization and Analysis of Electric Vehicle Operation with Fast-Charging Technologies. World Electric Vehicle Journal, 13(1), 20. https://doi.org/10.3390/wevj13010020

Baldino, C., O’Malley, J., Searle, S., & Christensen, A. (2021). Hydrogen for heating? Decarbonization options for households in Germany in 2050. International Council on Clean Transportation. https://theicct.org/sites/default/files/publications/Hydrogen-heating-germany-EN-apr2021.pdf.

Ballard. (2023) Battery-Fuel Cell Hybrid Electric Buses Optimized Solutions for Zero-Emission Transit. https://info.ballard.com/hybrid-electric-buses-whitepaper (accessed 21.04.2023)

Ballard Power Systems. (2021). Case Study. Fuel Cell Zero-Emission Buses for Pau, France. https://www.ballard.com/docs/default-source/motive-modules-documents/pau-case-study.pdf?sfvrsn=a51adc80_6

Barra González, J. (2020). Estrategia Nacional de Electromovilidad en el sector transporte de Chile (Doctoral dissertation, Universidad del Desarrollo. Facultad de Gobierno). https://repositorio.udd.cl/bitstream/11447/3814/1/Estrategia%20Nacional%20de%20Electromovilidad%20en%20el%20sector%20transporte%20de%20Chile.pdf.

Berger, R., Ammermann, H., Ruf, Y., Lange, S., Fundulea, D., & Martin, A. (2015). Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe. http://www.fch.europa. eu/sites/default/files/150909_FINAL_Bus_Study_Report_OUT_0.PDF.

Birol, F. (2021). Open letter to the International Energy Agency and its member countries: Please remove paywalls from global energy data and add appropriate open licenses. https://malteschaefer1.github.io/assets/files/iea_letter.pdf.

Bonci, M. (2021). Fuel Cell Vehicle simulation: an approach based on Toyota Mirai (Doctoral dissertation, Politecnico di Torino). https://webthesis.biblio.polito.it/17641/

Bonilla, O., & Merino, D. N. (2010). Economics of a hydrogen bus transportation system: case study using an after tax analysis model. Engineering Management Journal, 22(3), 34-44. https://doi.org/10.1080/10429247.2010.11431870

Broatch, A., Olmeda, P., Margot, X., & Aceros, S. (2023). Different strategies in an integrated thermal management system of a fuel cell electric bus under real driving cycles in winter. Energy Conversion and Management, 288, 117137. https://doi.org/10.1016/j.enconman.2023.117137

California Air resources Board. (2019). Innovative Clean Transit (ICT) Regulation (2019). Regulation Fact Sheet. https://ww2.arb.ca.gov/resources/fact-sheets/innovative-clean-transit-ict-regulation-fact-sheet >(Accessed 02.04.2023).

Chang, C. C., Liao, Y. T., & Chang, Y. W. (2019). Life cycle assessment of alternative energy types–including hydrogen–for public city buses in Taiwan. International Journal of Hydrogen Energy, 44(33), 18472-18482.https://doi.org/10.1016/j.ijhydene.2019.05.073

Chang, C. T., Yang, C. H., & Lin, T. P. (2019). Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. Journal of Cleaner Production, 230, 1241-1255.https://doi.org/10.1016/j.jclepro.2019.05.006

China, D. (2020). Fueling the Future of Mobility. Hydrogen and fuel cell solutions for transportation, 1. https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/finance/deloitte-cn-fueling-the-future-of-mobility-en-200101.pdf

Clean Energy ministerial (2021). First ever global Mou on 100% zero-emission medium and heavy duty vehicules announced under evis drive to cero campaign. https://www.cleanenergyministerial.org/first-ever-global-mou-on-100-zero-emission-medium-and-heavy-duty-vehicles-announced-under-evis-drive-to-zero-campaign/

Cockroft, C. J., & Owen, A. D. (2007). The economics of hydrogen fuel cell buses. Economic Record, 83(263), 359-370. https://doi.org/10.1111/j.1475-4932.2007.00426.x

Collantes, G., & Sperling, D. (2008). The origin of California’s zero emission vehicle mandate. Transportation Research Part A: Policy and Practice, 42(10), 1302-1313. https://doi.org/10.1016/j.tra.2008.05.007

Correa, G., Muñoz, P. M., & Rodriguez, C. R. (2019). A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy, 187, 115906. https://doi.org/10.1016/j.energy.2019.115906

Correa, G., Muñoz, P., Falaguerra, T., & Rodriguez, C. R. (2017). Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis. Energy, 141, 537-549. https://doi.org/10.1016/j.energy.2017.09.066

Decarbonization Plan Commitment of the Bicentennial Government (2018-2022). Descarbonicemos Costa Rica compromiso país. https://www.2050pathways.org/wp-content/uploads/2019/02/Decarbonization-Plan-Costa-Rica.pdf

Deliali, A., Chhan, D., Oliver, J., Sayess, R., Godri Pollitt, K. J., & Christofa, E. (2021). Transitioning to zero-emission bus fleets: state of practice of implementations in the United States. Transport Reviews, 41(2), 164-191. https://doi.org/10.1080/01441647.2020.1800132

Despaux L., (2019). La Station Hydrogène. Source D’énergie verte pour un territoire durable. Dosier de presse. https://www.fuelcellbuses.eu/sites/default/files/documents/20190111%20Febus-Dossier%20Press%20Station%20H2.pdf

Díez, A., Velandia, E., Bohórquez, J. A., Restrepo, M., & Guggenberg, E. (2012). Reintroduction of trolleybuses in Colombia: An opportunity for the development of sustainable transport. In PICMET (Vol. 12, pp. 1125-31). https://www.academia.edu/download/51399247/Reintroduction_of_Trolleybuses_in_Colomb20170117-31947-1at5qy3.pdf

Difiglio, C., Güray, B. Ş., & Merdan, E. (2020). Turkey Energy Outlook 2020. Sabancı University Istanbul International Center for Energy and Climate. from:https://iicec.sabanciuniv.edu/sites/iicec.sabanciuniv.edu/files/inline-files/TEO.pdf

Dincer, I., Eroğlu, İ., & Öztürk, M. (2021). Türkiye için hidrojen teknolojileri yol haritası. Hidrojen Teknolojileri Derneği Yayınları . https://www.hidrojenteknolojileri.org/HTD/Turkiye_icin_Hidrojen_Teknolojileri_Yol_Haritasi_Raporu_2021.pdf.

Energi-, Forsynings- og Klimaministeriet Stormgade (2018). København KSammen om en grønnere fremtid Klima- og lufudspil, 2-6 1470. https://kefm.dk/media/6728/klimaministeriet_klimaogluftudspil_digital.pdf

Eudy, L., & Post, M. (2014). Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report (No. NREL/TP-5400-60527). National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1134120

Eudy, L., & Post, M. B. (2017). Fuel cell buses in us transit fleets: Current status 2017 (No. NREL/TP-5400-70075). National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1410409

Eudy, L., & Post, M. B. (2018). Zero-Emission Bus Evaluation Results: Orange County Transportation Authority Fuel Cell Electric Bus (No. NREL/TP-5400-72226). National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1557423

Eudy, L., & Post, M. B. (2020). Fuel cell buses in us transit fleets: Current status 2017 (No. NREL/TP-5400-70583). National Renewable Energy Lab. (NREL), Golden, CO (United States). https://www.nrel.gov/docs/fy21osti/75583.pdf

European Automobile Manufacturers’ Association (2020). Medium and Heavy Buses (Over 3.5T) New Registrations By Fuel Type In the European Union (2020). https://www.acea.auto/files/ACEA_buses_by_fuel_type_full-year_2020.pdf.

Fuel cell Electric Buses. Fébus Project Brochure. https://3emotion.eu/sites/default/files/Montage_A4_%20flyer_3emotion_05_2020.pdf

Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (2021), Austria's 2030 Mobility Master Plan. https://www.bmk.gv.at/en/topics/mobility/mobilitymasterplan2030.html.

Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., ... & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data Discussions, 2020, 12, 3269–3340. https://doi.org/10.5194/essd-12-3269-2020

Fuel cell Electric Buses. Fébus Project Budget. https://www.fuelcellbuses.eu/sites/default/files/documents/Febus-Brochure-BusWorld_0.pdf

Gabsalikhova, L., Sadygova, G., & Almetova, Z. (2018). Activities to convert the public transport fleet to electric buses. Transportation research procedia, 36, 669-675. https://doi.org/10.1016/j.trpro.2018.12.127

Grütter, J. M., & Grütter Consulting, A. G. (2014). Real world performance of hybrid and electric buses. Renewable energy & energy efficiency promotion in international cooperation. https://slocat.net/wp-content/uploads/legacy/u13/report_hybrid_and_electric_buses.pdf

Guerra, C. F., Caparrós, M. J., Calderón, B. N., Carbonero, V. S., Gallego, E. N., Reyes-Bozo, L., ... & Vyhmeister, E. (2018). Viability analysis of centralized hydrogen generation plant for use in mobility sector. International Journal of Hydrogen Energy, 43(26), 11793-11802.Available from: https://doi.org/10.1016/j.ijhydene.2018.04.178

He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530. https://doi.org/10.1016/j.scs.2019.101530

Hua, T., Ahluwalia, R., Eudy, L., Singer, G., Jermer, B., Asselin-Miller, N., ... & Marcinkoski, J. (2014). Status of hydrogen fuel cell electric buses worldwide. Journal of Power Sources, 269, 975-993. https://doi.org/10.1016/j.jpowsour.2014.06.055

İETT İETT 2021-2025 yılı Stratejik Planı. (s. f.) İETT 2021-2025 yılı Stratejik Planı. (s. f.). https://iett.istanbul/icerik/iett-2021-2025-yili-stratejik-plani

İETT İşletmeleri Genel Müdürlüğü.(2022). Performans Programı. https://iett.istanbul/BBImages/Slider/Image/2022-performans-1.pdf

International Energy Agency (2021). Hydrogen is an increasingly important piece of the net zero emissions by 2050 puzzle. https://www.iea.org/energy-system/low-emission-fuels/hydrogen (Accessed 10.05.2023).

International Energy Agency. (2021) Greenhouse Gas Emissions from Energy data Explorer. https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer>(Accessed 04.04.2023).

Kim, H., Hartmann, N., Zeller, M., Luise, R., & Soylu, T. (2021). Comparative tco analysis of battery electric and hydrogen fuel cell buses for public transport system in small to midsize cities. Energies, 14(14), 4384. https://doi.org/10.3390/en14144384

Kotze, R., Brent, A. C., Musango, J., de Kock, I., & Malczynski, L. A. (2021). Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen. Energies, 14(6), 1646. https://doi.org/10.3390/en14061646

Kozlov, A. V., Porsin, A. V., Dobrovol’skii, Y. A., Kashin, A. M., Terenchenko, A. S., Gorin, M. A., ... & Milov, K. V. (2021). Life Cycle Assesment of Powertrains Based on a Battery, Hydrogen Fuel Cells, and Internal Combustion Engine for Urban Buses under the Conditions of Moscow Oblast. Russian Journal of Applied Chemistry, 94(6), 793-812. https://doi.org/10.1134/S1070427221060136

Kudryavtseva, O. V., Baraboshkina, A. V., & Nadenenko, A. K. (2021). Sustainable low-carbon development of urban public transport: International and Russia’s experience. Журнал Сибирского федерального университета. Гуманитарные науки, 14(12), 1795-1807. https://cyberleninka.ru/article/n/sustainable-low-carbon-development-of-urban-public-transport-international-and-russia-s-experience

Laib, F., Braun, A., & Rid, W. (2019). Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transportation Research Procedia, 37, 377-384. https://doi.org/10.1016/j.trpro.2018.12.206

Lee, J. Y., Cha, K. H., Lim, T. W., & Hur, T. (2011). Eco-efficiency of H2 and fuel cell buses. International journal of hydrogen energy, 36(2), 1754-1765. https://doi.org/10.1016/j.ijhydene.2010.10.074

Lian, J., Han, P., Li, L., & Sun, X. Real‐time energy management strategy for fuel cell plug‐in hybrid electric bus using short‐term power smoothing prediction and distance adaptive state‐of‐charge consumption. Energy Technology. https://doi.org/10.1002/ente.202300099

Logan, K. G., Nelson, J. D., & Hastings, A. (2020). Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK. Transportation Research Part D: Transport and Environment, 85, 102350. https://doi.org/10.1016/j.trd.2020.102350

Lucie KEMPF, Chef de Project Fébus, Investment Transport Collective, personal communication, 22 March 2022.

Melo, P., Ribau, J., & Silva, C. (2014). Urban bus fleet conversion to hybrid fuel cell optimal powertrains. Procedia-social and behavioral sciences, 111, 692-701. Available from: https://doi.org/10.1016/j.sbspro.2014.01.103.

Mendez, C., Contestabile, M., & Bicer, Y. (2023). Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.04.194

Moreno, B., & García-Álvarez, M. T. (2018). Measuring the progress towards a resource-efficient European Union under the Europe 2020 strategy. Journal of Cleaner Production, 170, 991-1005. https://doi.org/10.1016/j.jclepro.2017.09.149

Mulley, C., Ho, C., Balbontin, C., Hensher, D., Stevens, L., Nelson, J. D., & Wright, S. (2020). Mobility as a service in community transport in Australia: Can it provide a sustainable future?. Transportation Research Part A: Policy and Practice, 131, 107-122. https://doi.org/10.1016/j.tra.2019.04.001

Navas-Anguita, Z., García-Gusano, D., Dufour, J., & Iribarren, D. (2020). Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Applied Energy, 259, 114121. https://doi.org/10.1016/j.apenergy.2019.114121

Netherlands Enterprise Agency (2019). Mission Zero Powered by Holland. https://www.rvo.nl/sites/default/files/2019/06/Misson%20Zero%20Powered%20by%20Holland.pdf.

Official Gazette of the Presidency of the Republic of Türkiye, 17 December 2021 and 31692 Numbered, Ministry of Labor and Social Security, Minimum Wage Determination Commission Decision. https://www.resmigazete.gov.tr/eskiler/2022/01/20220127.htm#:~:text=%C3%96rnek%201%3A%20%C4%B0%C5%9Fveren%20(A),benzeri%20ba%C5%9Fkaca%20bir%20%C3%B6deme%20yap%C4%B1lmamaktad%C4%B1r.

Olabi, A. G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M. A., & Al–Alami, A. H. (2021). Critical review of energy storage systems. Energy, 214, 118987. https://doi.org/10.1016/j.energy.2020.118987

Pawelec, G., Muron, M., Bracht, J., Bonnet-Cantalloube, B., Floristean, A., & Brahy, N. (2020). Clean hydrogen monitor. https://www.h2knowledgecentre.com/content/policypaper2174.

Pederzoli, D. W., Carnevali, C., Genova, R., Mazzucchelli, M., Del Borghi, A., Gallo, M., & Moreschi, L. (2022). Life cycle assessment of hydrogen-powered city buses in the High V. LO-City project: integrating vehicle operation and refuelling infrastructure. SN Applied Sciences, 4(2), 57. https://doi.org/10.1007/s42452-021-04933-6

Public Procurement Authority. (2021). EKAP Information Page. 2021/389857 (tender registration number). https://ekap.kik.gov.tr/EKAP/Ortak/IhaleArama/index.html (accessed on 18 April 2022 ).

Public Procurement Authority. (2017). EKAP Information Page. 2017/111661 (tender registration number). https://ekap.kik.gov.tr/EKAP/Ortak/IhaleArama/index.html (accessed on 18 April 2022 ).

Public Procurement Authority. (2016). EKAP Information Page.2016/558338 (tender registration number). https://ekap.kik.gov.tr/EKAP/Ortak/IhaleArama/index.html (accessed on 18 April 2022 ).

Ritari, A., Huotari, J., Halme, J., & Tammi, K. (2020). Hybrid electric topology for short sea ships with high auxiliary power availability requirement. Energy, 190, 116359. https://doi.org/10.1016/j.energy.2019.116359

Rodrigues, A. L., & Seixas, S. R. (2022). Battery-electric buses and their implementation barriers: Analysis and prospects for sustainability. Sustainable Energy Technologies and Assessments, 51, 101896. https://doi.org/10.1016/j.seta.2021.101896

Saltzstein, S. J., Hanson, B., & Freeze, G. A. (2020). Spent Fuel and Waste Science and Technology Storage and Transportation R&D Strategic Plan (No. SAND2020-11667C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). https://doi.org/10.2172/1830906

Santarelli, M. G., Torchio, M. F., & Cochis, P. (2006). Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature. Journal of Power Sources, 159(2), 824-835. https://doi.org/10.1016/j.jpowsour.2005.11.099

Scarabottolo, O. (2023). Results from Models of Economic Hydrogen Refuelling Infrastructure (MEHRLIN) project to support the future of hydrogen in transport https://www.fuelcellbuses.eu/sites/default/files/documents/20190111%20Fébus-Dossier%20Press%20Station%20H2.pdf

Sen, A., & Miller, J. (2022). Emissions reduction benefits of a faster, global transition to zeroemission vehicles. Working Paper, (2022-15). https://theicct.org/wp-content/uploads/2022/03/Accelerated-ZEV-transition-wp-final.pdf

Sokolsky, S., Tomic, J., & Gallo, J. B. (2016). Best practices in hydrogen fueling and maintenance facilities for transit agencies. World Electric Vehicle Journal, 8(2), 553-556. https://doi.org/10.3390/wevj8020553

Solaris Group (2022). Urbino Hydrogen Bus Technical Brochure. https://www.solarisbus.com/en/vehicles/zero-emissions/hydrogen

Stolzenburg, K., Whitehouse, N., & Whitehouse, S. (2020). JIVE-Best Practice and Commercialisation Report 2. JIVE 2-Best Practice Information Bank. https://www.fuelcellbuses.eu/sites/default/files/documents/Best_Practice_Report_January_2020__JIVE_D3.24_JIVE_2_D3.7.pdf

The Organisation for Economic Co-operation and Development (2020) Air and GHG emissions Datas. https://data.oecd.org/air/air-and-ghg-emissions.htm>(Accessed 12.06.2023).

Topal, O. (2017). Electric bus concept against to diesel and CNG bus for public transport operations. In 2017 5th international istanbul smart grid and cities congress and fair (ICSG) (pp. 105-109). IEEE. https://doi.org/10.1109/SGCF.2017.7947612

Topal, O. (2021). İstanbul Lastik Tekerlekli Toplu Ulaşım Sistemlerindeki Özel Halk Otobüsleri için Elektrikli Otobüs Konsepti. Avrupa Bilim ve Teknoloji Dergisi, (31), 968-973. https://doi.org/10.31590/ejosat.972925

Topal, O. (2022), Electric Bus Concept on Innovative Garage Operating Model for Public. Istambul Commerce University Journal of Science. 43(22). 138-151. https://doi.org/10.55071/ticaretfbd.1132070

Topal, O. (2023). A novel on the retrofit from CNG buses to electric buses for rubber-tyred wheeled public transportation systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(7), 1738-1750. https://doi.org/10.1177/09544070221093184

Topal, O., & Ateş, Y. (2021). Innovative Financial Approaches for Procurement on Electric Buses in Sustainable Public Transportation Systems. In 2021 10th International Conference on Power Science and Engineering (ICPSE) (pp. 41-49). IEEE. https://doi.org/10.1109/ICPSE53473.2021.9656868

Topal, O., & Nakir, İ. (2018). Total cost of ownership based economic analysis of diesel, CNG and electric bus concepts for the public transport in Istanbul City. Energies, 11(9), 2369. https://doi.org/10.3390/en11092369

UITP Union Internationale des Transports Publics Statistics Brief Global bus survey (2019). https://cms.uitp.org/wp/wp-content/uploads/2020/07/Statistics-Brief_Global-bus-survey-003.pdf

Undertaking, H. J. (2012). Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains. https://www.h2knowledgecentre.com/content/researchpaper1134

Van de Kaa, G., Scholten, D., Rezaei, J., & Milchram, C. (2017). The battle between battery and fuel cell powered electric vehicles: A BWM approach. Energies, 10(11), 1707. https://doi.org/10.3390/en10111707

Wu, Y., Liu, F., He, J., Wu, M., & Ke, Y. (2021). Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target. Energy Policy, 159, 112643. https://doi.org/10.1016/j.enpol.2021.112643

Cómo citar
Topal, O. (2023). Movilidad urbana sostenible en Estambul: Evaluación económica de los autobuses híbridos eléctricos de pila de combustible en el sistema de metrobús. CT&F - Ciencia, Tecnología Y Futuro, 13(1), 15–30. https://doi.org/10.29047/01225383.654

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-06-30
Sección
Artículos de investigación científica y tecnológica

Métricas

Crossref Cited-by logo
QR Code