Estudio comparativo de un ciclo transcrítico de dióxido de carbono alimentado por un único ciclo geotérmico flash en los modos de funcionamiento con/sin economizador

Palabras clave: economizador, tasa de coste de producción, ciclo geotérmico monofásico, tasa de coste total, ciclo transcrítico de CO2

Resumen

El uso de energías renovables, en particular la geotérmica, está aumentando en todo el mundo. Se ha demostrado que recuperar el calor perdido durante los ciclos geotérmicos es esencial debido a la ineficiencia de estos ciclos. Este estudio propone un ciclo combinado de generación de energía que utiliza el software EES para modelar un ciclo geotérmico de un solo flujo y un ciclo transcrítico de dióxido de carbono. El estudio compara el rendimiento del sistema durante sus fases operativas "Sin economizador" y "Con economizador". Se examina el impacto del economizador en las métricas de producción del sistema, incluida la producción de potencia neta, la eficiencia energética y la eficiencia exergética. Los resultados muestran que la potencia neta del sistema "con economizador" aumentó de 451.3 kW a 454 kW. La diferencia de eficiencia energética entre los dos sistemas se basa en la primera ley de la termodinámica, teniendo el sistema "Sin economizador" un valor de 6.036% y el sistema "Con economizador" un valor de 6.075%. El sistema sin economizador tuvo un valor de eficiencia exergética del 26.26%, mientras que el sistema con economizador alcanzó un valor del 26.43% basado en la segunda ley de la termodinámica. La instalación del economizador aumentó la tasa de coste total económico del sistema de 0.225 M$/año a 0.2294 M$/año, lo que se tradujo en un aumento de la tasa de coste del producto de 15.82$/GJ a 16.02$/GJ.

Referencias bibliográficas

Aali, A., Pourmahmoud, N., & Zare, V. (2017). Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Conversion and Management, 143, 377-390. https://doi.org/https://doi.org/10.1016/j.enconman.2017.04.025

Baghernejad, A., & Yaghoubi, M. (2011). Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm. Energy Conversion and Management, 52(5), 2193-2203. https://doi.org/https://doi.org/10.1016/j.enconman.2010.12.019

Başoğul, Y., Güler, O. V., & Keçebaş, A. (2021). Chapter 8 - Binary geothermal power plant. In Thermodynamic Analysis and Optimization of Geothermal Power Plants (pp. 113-129).Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821037-6.00013-5

Bejan, A., Tsatsaronis, G., & Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons. http://www3.ub.tu-berlin.de/ihv/000278235.pdf

Cao, Y., Elmasry, Y., Abed, A. M., Singh, P. K., Aouaini, F., Bouzgarrou, S. M., ... & Galal, A. M. (2022). Study and multi-objective optimization of integrating an energetic solar thermal application, a supercritical process, and a high-temperature electrolyser. Case Studies in Thermal Engineering, 40, 102530. https://doi.org/https://doi.org/10.1016/j.csite.2022.102530

Chen, L., Wang, Y., Xie, M., Ye, K., & Mohtaram, S. (2021). Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. Journal of Energy Storage, 42, 103009. https://doi.org/https://doi.org/10.1016/j.est.2021.103009

El Haj Assad, M., Aryanfar, Y., Javaherian, A., Khosravi, A., Aghaei, K., Hosseinzadeh, S., ... & Mahmoudi, S. M. S. (2021). Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant. International Journal of Low-Carbon Technologies, 16(4), 1504-1518. https://doi.org/10.1093/ijlct/ctab076

Gürbüz Yağız, E., Güler, O. V., & Keçebaş, A. (2022). Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis. Renewable Energy, 185, 1110-1123. https://doi.org/https://doi.org/10.1016/j.renene.2021.12.097

Hoseinzadeh, S., Yargholi, R., Kariman, H., & Heyns, P. S. (2020). Exergoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy [https://doi.org/10.1002/ep.13405]. Environmental Progress & Sustainable Energy, 39(5), e13405. https://doi.org/https://doi.org/10.1002/ep.13405

Jiang, P. X., Zhang, F. Z., & Xu, R. N. (2017).. Thermodynamic analysis of a solar–enhanced geothermal hybrid power plant using CO2 as working fluid. Applied Thermal Engineering, 116, 463-472. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.12.086

Karki, A. B. (2009). Biogas as renewable energy from organic waste. Biotechnology, 10, 1-9. https://www.eolss.net/Sample-Chapters/C17/E6-58-09-10.pdf

Kurchania, A. (2012). Biomass energy. In Biomass Conversion: the interface of biotechnology, chemistry and materials science (pp. 91-122). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_2

Liu, F., Kang, Y., Hu, Y., Chen, H., Wang, X., Pan, H., & Xie, J. (2022). Comparative investigation on the heat extraction performance of an enhanced geothermal system with N2O, CO2 and H2O as working fluids. Applied Thermal Engineering, 200, 117594. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117594

Liu, X., Yu, K., Wan, X., Zheng, M., & Li, X. (2021). Conventional and advanced exergy analyses of transcritical CO2 ejector refrigeration system equipped with thermoelectric subcooler. Energy Reports, 7, 1765-1779. https://doi.org/https://doi.org/10.1016/j.egyr.2021.03.023

Liu, Y., Zhao, Y., Yang, Q., Liu, G., & Li, L. (2020). Thermodynamic comparison of CO2 power cycles and their compression processes. Case Studies in Thermal Engineering, 21, 100712. https://doi.org/https://doi.org/10.1016/j.csite.2020.100712

Mahmoudan, A., Esmaeilion, F., Hoseinzadeh, S., Soltani, M., Ahmadi, P., & Rosen, M. (2022). A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization. Applied Energy, 308, 118399. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118399

Melzi, B., Kefif, N., Assad, M. E. H., Delnava, H., & Hamid, A. (2021). Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City. Energy Engineering, 118(6), 1767-1781. https://doi.org/10.32604/EE.2021.017270

Mohtaram, S., Sun, Y., Omidi, M., & Lin, J. (2021). Energy-exergy efficiencies analyses of a waste-to-power generation system combined with an ammonia-water dilution Rankine cycle. Case Studies in Thermal Engineering, 25, 100909. https://doi.org/https://doi.org/10.1016/j.csite.2021.100909

Mosaffa, A. H., Mokarram, N. H., & Farshi, L. G. (2017). Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy. Geothermics, 65, 113-125. https://doi.org/https://doi.org/10.1016/j.geothermics.2016.09.004

Nordin, N. (2010, June). Limitations of Commercializing Fuel Cell Technologies. In AIP Conference Proceedings (Vol. 1225, No. 1, pp. 498-506). American Institute of Physics. https://doi.org/10.1063/1.3464897

Pambudi, N. A., Wibowo, S., Ranto, & Saw, L. H. (2021). Experimental Investigation of Organic Rankine Cycle (ORC) for Low Temperature Geothermal Fluid: Effect of Pump Rotation and R-134 Working Fluid in Scroll-Expander. Energy Engineering, 118(5). https://doi.org/10.32604/EE.2021.016642

Parikhani, T., Delpisheh, M., Haghghi, M. A., Holagh, S. G., & Athari, H. (2021). Performance enhancement and multi-objective optimization of a double-flash binary geothermal power plant. Energy Nexus, 2, 100012. https://doi.org/https://doi.org/10.1016/j.nexus.2021.100012

Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2021). Development of Environmentally Friendly and Energy Efficient Refrigerants for Refrigeration Systems. Energy Engineering, 118(2), 411-433. https://doi.org/10.32604/EE.2021.012860

Sahana, C., De, S., & Mondal, S. (2021). Integration of CO2 power and refrigeration cycles with a desalination unit to recover geothermal heat in an oilfield. Applied Thermal Engineering, 189, 116744. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.116744

Sun, H., Dong, Q., Zhang, C., & Chen, J. (2020). An Energy Efficiency Improvement Method for Manufacturing Process Based on ECRSR. Energy Engineering, 117(3), 153-164. https://doi.org/10.32604/EE.2020.010706

Wang, J., Wang, J., Dai, Y., & Zhao, P. (2015). Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics, 55, 69-77. https://doi.org/https://doi.org/10.1016/j.geothermics.2015.01.012

Wang, X., Levy, E. K., Pan, C., Romero, C. E., Banerjee, A., Rubio-Maya, C., & Pan, L. (2019). Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Applied Thermal Engineering, 149, 1287-1304. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.12.112

Xu, G., Liang, F., Yang, Y., Hu, Y., Zhang, K., & Liu, W. (2014). An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies, 7(5), 3484-3502. https://doi.org/10.3390/en7053484

Yargholi, R., Kariman, H., Hoseinzadeh, S., Bidi, M., & Naseri, A. (2020). Modeling and advanced exergy analysis of integrated reverse osmosis desalination with geothermal energy. Water Supply, 20(3), 984-996. https://doi.org/10.2166/ws.2020.021

Yazarlou, T., & Saghafi, M. D. (2021). Investigation of Plans Shape and Glazing Percentage for the Energy Efficiency of Residential Buildings. Energy Engineering, 118(6). https://doi.org/10.32604/EE.2021.017282

Zobaa, A. F., & Bansal, R. C. (Eds.). (2011). Handbook of renewable energy technology. World Scientific. https://doi.org/10.1142/7489

Cómo citar
Aryanfar, Y., García Alcaraz, J. L., Blanco Fernandez, J., Burgos Espinoza , I. I., & Márquez Figueroa, L. J. (2023). Estudio comparativo de un ciclo transcrítico de dióxido de carbono alimentado por un único ciclo geotérmico flash en los modos de funcionamiento con/sin economizador. CT&F - Ciencia, Tecnología Y Futuro, 13(1), 5–13. https://doi.org/10.29047/01225383.661

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-12-31
Sección
Artículos de investigación científica y tecnológica

Métricas

Crossref Cited-by logo
QR Code