Optimización del rendimiento del motor y las emisiones con nanopartículas de CeO2 en combustible diésel: mediante el método de superficie de respuesta
Resumen
El método de la sección de respuesta (RSM) determina la eficacia de la transferencia de datos en diferentes condiciones de carga del motor para minimizar y amplificar las emisiones. Tradicionalmente, se pueden aplicar mediciones manuales para medir el rendimiento y las emisiones de escape en diferentes condiciones de carga. Esto ahorra el coste de la medición continua. En este estudio experimental, se agregaron nanopartículas, que han sido utilizadas recientemente como aditivos de combustible, al combustible diésel y se investigó su efecto en el rendimiento del motor y las emisiones. Se realizó una optimización utilizando el método de superficie de respuesta con los resultados obtenidos. Se agregaron nanopartículas de CeO2 al combustible en concentraciones de 25, 50 y 100 ppm, y se realizaron pruebas a velocidades del motor de 1600, 2000, 2400 y 2800 rpm. Según los resultados, se observó un aumento en la eficiencia térmica, la potencia del motor y el par motor, mientras que se produjo una disminución en el consumo específico de combustible. En cuanto a las emisiones, las emisiones de CO, HC y hollín disminuyeron, mientras que las emisiones de NOx aumentaron. Se realizó un estudio de optimización con los datos obtenidos posteriormente. En la optimización realizada con el método de superficie de respuesta, se determinó que los valores óptimos eran 2200 rpm y 100 ppm de CeO2. Como resultado, se obtuvieron los siguientes valores para el par motor, la potencia del motor, el consumo específico de combustible, la eficiencia térmica, las emisiones de NOx, CO, HC y hollín: 25.650 Nm, 6.374 kW, 325.175 g/kWh, 27.50%, 1192 ppm, 53.30%, 96 ppm y 45.40%, respectivamente. En los parámetros de rendimiento del motor se obtuvieron tasas de error bajas. El método de superficie de respuesta ha demostrado su compatibilidad con tasas de error bajas, especialmente en los valores de rendimiento del motor.
Referencias bibliográficas
Alahmer, A., Yamin, J., Sakhrieh, A. & Hamdan, M. A. (2010). Engine performance using emulsified diesel fuel. Energy Conversion and Management, 51(8), 1708–1713. https://doi.org/10.1016/j.enconman.2009.11.044
Alauddin, M., El Baradie, M. A., & Hashmi, M. S. J. (1997). Prediction of tool life in end milling by response surface methodology. Journal of Materials Processing Technology, 71(3), 456-465.. https://doi.org/10.1016/S0924-0136(97)00111-8
Arslan, A. B., & Çelik, M. (2022). Investigation of the Effect of CeO 2 Nanoparticle Addition in Diesel Fuel on Engine Performance and Emissions. Journal of ETA Maritime Science, 10(3).145. https://doi.org/10.4274/jems.2022.65882
Babu, K. R., & Raja, R. B. (2015). Theoretical and experimental validation of performance and emission characteristics of nanoadditive blended diesel engine. International Journal of Research in Aeronautical and Mechanical Engineering, 3(5), 18-31. https://www.academia.edu/download/37876882/V3i506.pdf
Bayindirli, C., & Celik, M. (2019). Investigation of combustion and emission characteristics of n-hexane and n-hexadecane additives in diesel fuel. Journal of Mechanical Science and Technology, 33, 1937-1946. Technology, 33(4), 1937–1946. https://doi.org/10.1007/s12206-019-0344-8
Bayindirli, C., Celik, M., & Zan, R. (2023). Optimizing the thermophysical properties and combustion performance of biodiesel by graphite and reduced graphene oxide nanoparticle fuel additive. Engineering Science and Technology, an International Journal, 37, 101295. https://doi.org/10.1016/j.jestch.2022.101295
Bose, P. K., Bodkhe, V. N., Barma, B. D. & Banerjee, R. (2017). Response Surface Methodology Based Multi-objective Optimization of the Performance-Emission Profile of a CI Engine Running on Ethanol in Blends with Diesel. Green Energy and Technology, 201–228. https://doi.org/10.1007/978-981-10-3791-7_11
Çeli̇k, M., & Bayindirli, C. (2020). Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives. Energy, 202, 117643. https://doi.org/10.1016/j.energy.2020.117643
Çelik, M., Bayındırlı, C., & Mehregan, M. (2022). Multi-objective optimization of a diesel engine fueled with different fuel types containing additives using grey-based Taguchi approach. Environmental Science and Pollution Research, 1-8. https://doi.org/10.1007/s11356-021-18012-1
Chen, A. F., Adzmi, M. A., Adam, A., Othman, M. F., Kamaruzzaman, M. K., & Mrwan, A. G. (2018). Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy conversion and management, 171, 461-477. https://doi.org/10.1016/j.enconman.2018.06.004
Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer, 125(4), 567-574. https://doi.org/10.1115/1.1571080
Bharadwaz, Y. D., Rao, B. G., Rao, V. D., & Anusha, C. (2016). Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology. Alexandria Engineering Journal, 55(2), 1201-1209. https://doi.org/10.1016/j.aej.2016.04.006
Dhanasekar, K., Sridaran, M., Arivanandhan, M., & Jayavel, R. (2019). A facile preparation, performance and emission analysis of pongamia oil based novel biodiesel in diesel engine with CeO2: Gd nanoparticles. Fuel, 255, 115756. https://doi.org/10.1016/j.fuel.2019.115756
D'Silva, R., Binu, K. G., & Bhat, T. (2015). Performance and emission characteristics of a CI engine fuelled with diesel and TiO2 nanoparticles as fuel additive. Materials Today: Proceedings, 2(4-5), 3728-3735. https://doi.org/10.1016/j.matpr.2015.07.162
Elkelawy, M., Bastawissi, H. A. E., Esmaeil, K. K., Radwan, A. M., Panchal, H., Sadasivuni, K. K., ... & Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266, 117072. https://doi.org/10.1016/j.fuel.2020.117072
Favre, C., May, J., & Bosteels, D. (2016). Emissions control technologies to meet current and future European vehicle emissions legislation. URL: www. aecc. eu (дата обращения: 16.06. 16). https://www.aecc.eu/wp-content/uploads/2020/08/Emissions-Control-Technologies-to-meet-current-and-future-European-vehicle-emissions-legislation.pdf.
Geng, L., Bi, L., Li, Q., Chen, H., & Xie, Y. (2021). Experimental study on spray characteristics, combustion stability, and emission performance of a CRDI diesel engine operated with biodiesel–ethanol blends. Energy Reports, 7, 904-915. https://doi.org/10.1016/j.egyr.2021.01.043
Ghanbari, M., Mozafari-Vanani, L., Dehghani-Soufi, M., & Jahanbakhshi, A. (2021). Effect of alumina nanoparticles as additive with diesel–biodiesel blends on performance and emission characteristic of a six-cylinder diesel engine using response surface methodology (RSM). Energy Conversion and Management: X, 11, 100091. https://doi.org/10.1016/j.ecmx.2021.100091
Hazar, H., Mahmut, U. Y. A. R., AYDIN, H., & Emine, Ş. A. P. (2016). The effects of apricots seed oil biodiesel with some additives on performance and emissions of a diesel engine. International Journal of Automotive Engineering and Technologies, 5(3), 102-114. https://doi.org/10.18245/ijaet.287176
Hirkude, J. B., & Padalkar, A. S. (2014). Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel, 119, 266-273. https://doi.org/10.1016/j.fuel.2013.11.039
Hossain, A. K., & Hussain, A. (2019). Impact of nanoadditives on the performance and combustion characteristics of neat jatropha biodiesel. Energies, 12(5), 921. https://doi.org/10.3390/en12050921
Hussain Vali, R., Hoang, A. T., Marouf Wani, M., Pali, H. S., Balasubramanian, D., Arıcı, M., Said, Z. & Nguyen, X. P. (2022). Optimization of variable compression ratio diesel engine fueled with Zinc oxide nanoparticles and biodiesel emulsion using response surface methodology. Fuel, 323, 124290. https://doi.org/10.1016/j.fuel.2022.124290
Karthikeyan, S., Elango, A. & Prathima, A. (2014). Performance and Emission Study on Zinc Oxide Nano Particles Addition with Pomolion Stearin Wax Biodiesel of CI Engine. JSIR Vol.73(03), 73, 187–190. https://nopr.niscpr.res.in/bitstream/123456789/27382/1/JSIR%2073%283%29%20187-190.pdf
Keskin, A., Gürü, M., & Altıparmak, D. (2011). Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine. Energy Conversion and Management, 52(1), 60-65. https://doi.org/10.1016/j.enconman.2010.06.039
Kumar, N. & Raheman, H. (2022). Thermal and environmental performance of CI engine using CeO2 nanoparticles as additive in water–diesel–biodiesel fuel blend. International Journal of Environmental Science and Technology, 19(4), 3287–3304. https://doi.org/10.1007/S13762-021-03262-W/FIGURES/11
Kumar, S., Dinesha, P., & Rosen, M. A. (2019). Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy, 185, 1163-1173. https://doi.org/10.1016/j.energy.2019.07.124
Lenin, M. A., Swaminathan, M. R., & Kumaresan, G. (2013). Performance and emission characteristics of a DI diesel engine with a nanofuel additive. Fuel, 109, 362-365. https://doi.org/10.1016/j.fuel.2013.03.042
Mehregan, M., & Moghiman, M. (2014). Numerical investigation of effect of nano-aluminum addition on NOx and CO pollutants emission in liquid fuels combustion. Int J Mater Mech Manuf, 2(1), 60-63. https://www.ijmmm.org/papers/100-X0036.pdf.
Michaels-Katz, C. B., & Bartter, M. A. (1985). McGraw-Hill; McGraw-Hill Publishing Company; McGraw-Hill Book Company. American Literary Publishing Houses, 1900-1980: Trade and Paperback. https://go.gale.com/ps/i.do?p=LitRC&sw=w&issn=10968547&v=2.1&it=r&id=GALE%7CH1220000564&sid=googleScholar&linkaccess=fulltext
Murugesan, A., Avinash, A., Gunasekaran, E. J., & Murugaganesan, A. (2020). Multivariate analysis of nano additives on biodiesel fuelled engine characteristics. Fuel, 275, 117922. https://doi.org/10.1016/j.fuel.2020.117922
Najafi, G., Ghobadian, B., Yusaf, T., Ardebili, S. M. S., & Mamat, R. (2015). Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy, 90, 1815-1829. https://doi.org/10.1016/j.energy.2015.07.004
Qian, Y., Yu, L., Li, Z., Zhang, Y., Xu, L., Zhou, Q., Han, D. & Lu, X. (2018). A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics. Energy, 148, 424–447. https://doi.org/10.1016/j.energy.2018.01.181
Pulkrabek, W. W. (2004). Engineering fundamentals of the internal combustion engine. https://doi.org/10.1115/1.1669459
Rao, K. S., Gupta, B. L. V. S., Rao, K. M. & Rao, G. S. (2015). Effects of Cerium Oxide Nano Particles Addition in Diesel and Bio Diesel on the Performance and Emission Analysis of CI Engine. International Journal of Engineering Trends and Technology, 19(1). https://doi.org/10.14445/22315381/IJETT-V19P209
Sa, B., Markov, V., Liu, Y., Kamaltdinov, V. & Qiao, W. (2021). Numerical investigation of the effect of multi-walled carbon nanotube additive on nozzle flow and spray behaviors of diesel fuel. Fuel, 290, 119802. https://doi.org/10.1016/j.fuel.2020.119802
Safieddin Ardebili, S. M., Taghipoor, A., Solmaz, H. & Mostafaei, M. (2020). The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel, 268, 117356. https://doi.org/10.1016/j.fuel.2020.117356
Saidur, R., Jahirul, M. I., Hasanuzzaman, M., & Masjuki, H. H. (2008). Analysis of exhaust emissions of natural gas engine by using response surface methodology. Journal of Applied Sciences, 8(19), 3328-3339. https://doi.org/10.3923/jas.2008.3328.3339
Sajeevan, A. C. & Sajith, V. (2013). Diesel engine emission reduction using catalytic nanoparticles: An experimental investigation. Journal of Engineering, 2013. https://doi.org/10.1155/2013/589382
Saxena, V., Kumar, N. & Saxena, V. K. (2017). A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable and Sustainable Energy Reviews, 70, 563–588. https://doi.org/10.1016/j.rser.2016.11.067
Seela, C. R., Ravi Sankar, B., Kishore, D. & Babu, M. V. S. (2019). Experimental analysis on a DI diesel engine with cerium-oxide-added Mahua methyl ester blends. International Journal of Ambient Energy, 40(1), 49–53. https://doi.org/10.1080/01430750.2017.1360203
Shivakumar, Srinivasa Pai, P. & Shrinivasa Rao, B. R. (2011). Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Applied Energy, 88(7), 2344–2354. https://doi.org/10.1016/j.apenergy.2010.12.030
Simsek, S., Uslu, S. & Simsek, H. (2022). Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine. Energy, 239, 122389. https://doi.org/10.1016/j.energy.2021.122389
Singh, T. S., Rajak, U., Samuel, O. D., Chaurasiya, P. K., Natarajan, K., Verma, T. N. & Nashine, P. (2021). Optimization of performance and emission parameters of direct injection diesel engine fuelled with microalgae Spirulina (L.) – Response surface methodology and full factorial method approach. Fuel, 285, 119103. https://doi.org/10.1016/J.FUEL.2020.119103
Singh, Y., Sharma, A., Kumar Singh, G., Singla, A. & Kumar Singh, N. (2018). Optimization of performance and emission parameters of direct injection diesel engine fuelled with pongamia methyl esters-response surface methodology approach. Industrial Crops and Products, 126, 218–226. https://doi.org/10.1016/j.fuel.2020.119103
Solmaz, H., Ardebili, S. M. S., Calam, A., Yılmaz, E. & İpci, D. (2021). Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method. Energy, 227, 120518. https://doi.org/10.1016/J.ENERGY.2021.120518
Soudagar, M. E. M., Nik-Ghazali, N. N., Abul Kalam, M., Badruddin, I. A., Banapurmath, N. R. & Akram, N. (2018). The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management, 178, 146–177. https://doi.org/10.1016/j.energy.2021.120518
Soukht Saraee, H., Taghavifar, H. & Jafarmadar, S. (2017). Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network. Applied Thermal Engineering, 113, 663–672. https://doi.org/10.1016/j.applthermaleng.2016.11.044
Uslu, S. (2020). Optimization of diesel engine operating parameters fueled with palm oil-diesel blend: Comparative evaluation between response surface methodology (RSM) and artificial neural network (ANN). Fuel, 276, 117990. https://doi.org/10.1016/j.fuel.2020.117990
Win, Z., Gakkhar, R. P., Jain, S. C., & Bhattacharya, M. (2005). Parameter optimization of a diesel engine to reduce noise, fuel consumption, and exhaust emissions using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(10), 1181-1192. . https://doi.org/10.1243/095440705X34919
Yaman, H., Yesilyurt, M. K. & Uslu, S. (2022). Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach. Energy, 238, 122019. https://doi.org/10.1016/j.energy.2021.122019
Yaşar, A., Keskin, A., Yıldızhan, Ş. & Uludamar, E. (2019). Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles. Fuel, 239, 1224–1230. https://doi.org/10.1016/j.fuel.2018.11.113
Descargas
Derechos de autor 2023 CT&F - Ciencia, Tecnología y Futuro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |