Modelamiento del equilibrio de fases para mezcla agua-CO2-hidrocarbono utilizando la ecuación de estado CPA en procesos de EOR-almacenamiento por inyección de CO2: un estudio de caso colombiano
Resumen
En la actualidad es necesario reducir las emisiones de CO2 en la atmósfera. La industria petrolera en Colombia puede contribuir mediante procesos de inyección de CO2 en yacimientos depletados. Para ello, es fundamental tener un conocimiento de las interacciones fisicoquímicas del CO2 con fluidos de yacimiento. Para integrar las 3 fases CO2, agua e hidrocarburo se requieren modelos avanzados que capturen la fenomenología del equilibrio termodinámico. La ecuación de estado CPA (cubic-plus-association), es una ecuación que adiciona de un término asociativo para modelar la interacción del agua con fase hidrocarburo y CO2.
En este trabajo se modela termodinámicamente el proceso de inyección de CO2 en un caso de estudio de un yacimiento depletado colombiano. Se cuenta con un fluido composicional con un gradiente de propiedades PVT en un relieve vertical de 10000 ft a una condición de depletamiento de 2000 psia @ 15374 ft y un contacto agua-petróleo (OWC) a 17000 ft. Se realizaron inyecciones de CO2 entre el 10 y 80% molar, y a través de ecuación de estado CPA, se evaluaron las condiciones de hinchamiento del crudo, solubilidad del CO2 en el agua de formación y presurización del sistema. Los parámetros asociativos de la ecuación fueron tomados de literatura y estimados a través de simulaciones de dinámica molecular de las interacciones agua-CO2-Hidrocarburo, mediante la descripción simplificada de un crudo vivo con contenido de asfaltenos de 1% y metano de 50% mol a 6500 psia y 255 °F.
Este modelamiento termodinámico con ecuación de estado avanzada y uso de simulaciones de dinámica molecular, permitió simular diferentes escenarios de inyección de CO2 en un fluido composicional. El desarrollo de este tipo de estudios es clave para llevar a cabo procesos de inyección de CO2 exitosos enfocados en recobro mejorado (EOR) y almacenamiento de CO2 en el medio poroso en un yacimiento composicional depletado colombiano.
Referencias bibliográficas
Al Ghafri, S. Z., & Trusler, J. P. M. (2019). Phase equilibria of (Methylbenzene + Carbon dioxide + Methane) at elevated pressure: Experiment and modelling. Journal of Supercritical Fluids, 145. 1-9. https://doi.org/10.1016/j.supflu.2018.11.012
Arya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 400, 8–19. https://doi.org/10.1016/j.fluid.2015.04.032
Arya, A., Von Solms, N., & Kontogeorgis, G. M. (2016). Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation Using the Cubic-Plus-Association Equation of State. Energy and Fuels, 30(5), 3560–3574. https://doi.org/10.1021/acs.energyfuels.5b01874
Avendaño, C., Lafitte, T., Galindo, A., Adjiman, C. S., Jackson, G., & Müller, E. A. (2011). SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. Journal of Physical Chemistry B, 115(38), 11154-11169. https://doi.org/10.1021/jp204908d
Baklid, A., Korbol, R., & Owren, G. (1996, October). Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. In SPE Annual Technical Conference and Exhibition? (pp. SPE-36600). SPE. https://doi.org/10.2118/36600-MS
Bian, X. Q., Xiong, W., Kasthuriarachchi, D. T. K., & Liu, Y. B. (2019). Phase equilibrium modeling for carbon dioxide solubility in aqueous sodium chloride solutions using an association equation of state. Industrial and Engineering Chemistry Research, 58(24). 10570-10578. https://doi.org/10.1021/acs.iecr.9b01736
Bjørner, M. G. (2016). Thermodynamic modeling of CO2 mixtures. https://orbit.dtu.dk/files/128129274/Thesis_mgabj_final.pdf
Bjørner, M. G., & Kontogeorgis, G. M. (2016). Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state. Fluid Phase Equilibria, 408, 151-169. https://doi.org/10.1016/j.fluid.2015.08.011.
Chabab, S., Théveneau, P., Corvisier, J., Coquelet, C., Paricaud, P., Houriez, C., & Ahmar, E. El. (2019). Thermodynamic study of the CO2 – H2O – NaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models. International Journal of Greenhouse Gas Control, 91. 102825. https://doi.org/10.1016/j.ijggc.2019.102825
Chen, Z., Zhou, Y., & Li, H. (2022). A Review of Phase Behavior Mechanisms of CO2 EOR and Storage in Subsurface Formations. Industrial and Engineering Chemistry Research, 61(29), 10298-10318. https://doi.org/10.1021/acs.iecr.2c00204
Danten, Y., Tassaing, T., & Besnard, M. (2005). Ab initio investigation of vibrational spectra of water−(CO2) n complexes (n= 1, 2). The Journal of Physical Chemistry A, 109(14), 3250-3256. https://doi.org/10.1021/jp0503819
Dufal, S., Papaioannou, V., Sadeqzadeh, M., Pogiatzis, T., Chremos, A., Adjiman, C. S., ... & Galindo, A. (2014). Prediction of thermodynamic properties and phase behavior of fluids and mixtures with the SAFT-γ Mie group-contribution equation of state. Journal of Chemical & Engineering Data, 59(10), 3272-3288. https://doi.org/10.1021/je500248h
Ennis-King, J., & Paterson, L. (2002, October). Engineering aspects of geological sequestration of carbon dioxide. In SPE Asia Pacific Oil and Gas Conference and Exhibition (pp. SPE-77809). SPE. https://doi.org/10.2523/77809-MS
Headen, T. F., Boek, E. S., Jackson, G., Totton, T. S., & Müller, E. A. (2017). Simulation of Asphaltene Aggregation through Molecular Dynamics: Insights and Limitations. Energy and Fuels, 31(2), 1108–1125. https://doi.org/10.1021/acs.energyfuels.6b02161
Herdes, C., Totton, T. S., & Müller, E. A. (2015). Coarse grained force field for the molecular simulation of natural gases and condensates. Fluid Phase Equilibria, 406, 91-100. https://doi.org/10.1016/j.fluid.2015.07.014
Hockney, R. W. 0, & Eastwood, J. W. (1988). Computer Simulation Using Particles (A. Hilger, Ed.). https://doi.org/10.1201/9780367806934
Houoway, S., & Survey, B. G. (1993). The potential for aquider disposal of carbon dioxide in the UK. Energy Conversion and Management, 34(9–11), 925–932. https://doi.org/10.1016/0196-8904(93)90038-C
Huang, S. H., & Radosz, M. (1990). Equation of state for small, large, polydisperse, and associating molecules. Industrial & Engineering Chemistry Research, 29(11), 2284–2294. https://doi.org/10.1021/ie00107a014
IEA. (2008). Energy technology perspective. Scenario and strategies to 2050. In Strategies (Issue June). https://iea.blob.core.windows.net/assets/0e190efb-daec-4116-9ff7-ea097f649a77/etp2008.pdf
Javanbakht, G., Sedghi, M., Welch, W., & Goual, L. (2015). Molecular dynamics simulations of CO2/water/quartz interfacial properties: Impact of CO2 dissolution in water. Langmuir, 31(21), 5812–5819. https://doi.org/10.1021/acs.langmuir.5b00445
Jindrova, T., Mikyška, J., & Firoozabadi, A. (2016). Phase behavior modeling of bitumen and light normal alkanes and CO2 by PR-EOS and CPA-EOS. Energy & Fuels, 30(1), 515-525. https://doi.org/10.1021/acs.energyfuels.5b02322
Larsen, B., Rasaiah, J. C., & Stell, G. (1977). Thermodynamic perturbation theory for multipolar and ionic liquids. Molecular Physics, 33(4), 987-1027. https://doi.org/10.1080/00268977700100901
Li, J., Topphoff, M., Fischer, K., & Gmehling, J. (2001). Prediction of gas solubilities in aqueous electrolyte systems using the predictive Soave− Redlich− Kwong model. Industrial & engineering chemistry research, 40(16), 3703-3710. https://doi.org/10.1021/ie0100535
Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy & Fuels, 24(5), 2956–2963. https://doi.org/10.1021/ef9014263
Martinsen, S. Ø., Castiblanco, L., Osorio, R., & Whitson, C. H. (2010, September). Advanced Fluid Characterization of Pauto Complex, Colombia. In SPE Annual Technical Conference and Exhibition? (pp. SPE-135085). SPE. https://doi.org/10.2118/135085-MS
Moncayo-Riascos, I., Lozano, M. M., Hoyos, B. A., Franco, C. A., Riazi, M., & Cortés, F. B. (2021). Physical Insights about Viscosity Differences of Asphaltene Dissolved in Benzene and Xylene Isomers: Theoretical–Experimental Approaches. Energy & Fuels, 35(22), 18574–18582. https://doi.org/10.1021/acs.energyfuels.1c03348
Moncayo-Riascos, I., Rojas-Ruiz, F. A., Orrego-Ruiz, J. A., Cundar, C., Torres, R. G., & Cañas-Marín, W. (2022). Reconstruction of a synthetic crude oil using petroleomics and molecular dynamics simulations: A multistructural approach to understanding asphaltene aggregation behavior. Energy & Fuels, 36(2), 837-850. https://doi.org/10.1021/acs.energyfuels.1c03497
Monteiro, M. F., Moura-Neto, M. H., Pereira, C. G., & Chiavone-Filho, O. (2020). Description of phase equilibrium and volumetric properties for CO2+water and CO2+ethanol using the CPA equation of state. Journal of Supercritical Fluids, 161, 104841. https://doi.org/10.1016/j.supflu.2020.104841
Nascimento, F. P., Costa, G. M. N., & Vieira de Melo, S. A. B. (2019). A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope. Fluid Phase Equilibria, 494, 74–92. https://doi.org/10.1016/j.fluid.2019.04.027
Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016). New three-phase multicomponent compositional model for asphaltene precipitation during CO2 injection using CPA-EOS. Energy & Fuels, 30(4), 3306-3319. https://doi.org/10.1021/acs.energyfuels.5b02944
Negahban, S., Kazemi, M., Kalantari, M., Dindoruk, B., & Elshahawi, H. (2020). “Digital Fluid Physics”: Prediction of phase equilibria for several mixtures of CO2 with petroleum fluid systems. Journal of Petroleum Science and Engineering, 187, 106752. https://doi.org/10.1016/j.petrol.2019.106752
Oliveira, M. B., Queimada, A. J., Kontogeorgis, G. M., & Coutinho, J. A. P. (2011). Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 55(3), 876–892. https://doi.org/10.1016/j.supflu.2010.09.036
Papaioannou, V., Calado, F., Lafitte, T., Dufal, S., Sadeqzadeh, M., Jackson, G., ... & Galindo, A. (2016). Application of the SAFT-γ Mie group contribution equation of state to fluids of relevance to the oil and gas industry. Fluid Phase Equilibria, 416, 104-119. https://doi.org/10.1016/j.fluid.2015.12.041
Péneloux, A., Rauzy, E., & Fréze, R. (1982). A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilibria, 8(1), 7–23. https://doi.org/10.1016/0378-3812(82)80002-2
Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011
Plimpton, S. (1995). Fast Parallel Algorithms for Short – Range Molecular Dynamics. Journal of Computational Physics, 117, 1–19. https://doi.org/10.1006/jcph.1995.1039
Ramírez, L., Moncayo-Riascos, I., Cortés, F. B., Franco, C. A., & Ribadeneira, R. (2021). Molecular dynamics study of the aggregation behavior of polycyclic aromatic hydrocarbon molecules in n-heptane-toluene mixtures: Assessing the heteroatom content effect. Energy and Fuels, 35(4), 3119–3129. https://doi.org/10.1021/acs.energyfuels.0c04153
Sanchez-Vicente, Y., Tay, W. J., Al Ghafri, S. Z., & Trusler, J. M. (2018). Thermodynamics of carbon dioxide-hydrocarbon systems. Applied Energy, 220, 629-642. https://doi.org/10.1016/j.apenergy.2018.03.136
Sun, X., Wang, Z., Li, H., He, H., & Sun, B. (2021). A simple model for the prediction of mutual solubility in CO2-brine system at geological conditions. Desalination, 504, 114972. https://doi.org/10.1016/j.desal.2021.114972
Tsivintzelis, I., Ali, S., & Kontogeorgis, G. M. (2015). Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. Fluid Phase Equilibria, 397, 1-17. https://doi.org/10.1016/j.fluid.2015.03.034
Tsivintzelis, I., & Kontogeorgis, G. M. (2015). Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. The Journal of Supercritical Fluids, 104, 29-39. https://doi.org/10.1016/j.supflu.2015.05.015
Tsivintzelis, I., Kontogeorgis, G. M., Michelsen, M. L., & Stenby, E. H. (2011). Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2. Fluid Phase Equilibria, 306(1), 38-56. https://doi.org/10.1016/j.fluid.2011.02.006
Valtz, A., Chapoy, A., Coquelet, C., Paricaud, P., & Richon, D. (2004). Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2 K. Fluid phase equilibria, 226, 333-344. https://doi.org/10.1016/j.fluid.2004.10.013
Van der Meer, L. G. H. (1993). The conditions limiting CO2 storage in aquifers. Energy Conversion and Management, 34(9-11), 959-966. https://doi.org/10.1016/0196-8904(93)90042-9
Van Der Meer, L. G. H., Van der Straaten, R., & Griffioen, J. (1995). Storage of carbon dioxide in aquifers in The Netherlands. In Studies in Environmental Science (Vol. 65, pp. 1099-1104). Elsevier. https://doi.org/10.1016/S0166-1116(06)80133-0
Van Rooijen, W. A., Habibi, P., Xu, K., Dey, P., Vlugt, T. J. H., Hajibeygi, H., & Moultos, O. A. (2023). Interfacial tensions, solubilities, and transport properties of the H2/H2O/NaCl system: A molecular simulation study. Journal of Chemical & Engineering Data, 69(2), 307-319. https://doi.org/10.1021/acs.jced.2c00707
William, H. (1996). VMD-visual molecular dynamics. Journal of molecular graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
Yang, Y., Chaisoontornyotin, W., & Hoepfner, M. P. (2018). Structure of asphaltenes during precipitation investigated by ultra-small-angle x-ray scattering. Langmuir, 34(35), 10371-10380. https://doi.org/10.1021/acs.langmuir.8b01873
Descargas
Derechos de autor 2024 CT&F - Ciencia, Tecnología y Futuro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |