Adopción del vehículo eléctrico en las empresas: sostenibilidad, eficiencia económica y gestión operativa
Resumen
La industria automovilística mundial está experimentando una transformación impulsada por las preocupaciones medioambientales, los objetivos de sostenibilidad y las tecnologías innovadoras. La adopción de vehículos eléctricos es un factor clave de esta transformación, ya que ofrece a los usuarios particulares y corporativos del sector del alquiler de coches una importante alternativa a los vehículos tradicionales con motor de combustión interna. Las ventajas económicas y operativas de los vehículos eléctricos, junto con la oportunidad para las empresas de alquiler de coches de cumplir con sus responsabilidades medioambientales, están acelerando esta transformación.
Este artículo presenta un estudio de caso sobre el uso de vehículos eléctricos para empresas de alquiler de coches a largo plazo con fines de servicio interno corporativo. El objetivo es ofrecer una evaluación multidimensional de la cuestión. El artículo también pretende informar a los mecanismos de toma de decisiones sobre el concepto de arrendamiento de vehículos eléctricos en una perspectiva amplia, desde la sostenibilidad medioambiental hasta las ventajas económicas, desde la experiencia del usuario hasta la eficiencia operativa.
Referencias bibliográficas
AC Transit Zero Emission program. (2022). Zero Emission Transit Bus Technology Analysis, Volume 3. https://www.actransit.org/sites/default/files/2022-06/0105-22%20Report-ZETBTA%20v3_FNL.pdf
Babu, A. R., Minovski, B., & Sebben, S. (2022). Thermal encapsulation of large battery packs for electric vehicles operating in cold climate. Applied Thermal Engineering, 212, 118548. https://doi.org/10.1016/j.applthermaleng.2022.118548
Bauer, G. S., Zheng, C., Shaheen, S., & Kammen, D. M. (2021). Leveraging big data and coordinated charging for effective taxi fleet electrification: The 100% EV conversion of shenzhen, China. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10343-10353. https://doi.org/10.1109/TITS.2021.3092276
Berg Mårtensson, H., Höjer, M., & Åkerman, J. (2024). Low emission scenarios with shared and electric cars: Analyzing life cycle emissions, biofuel use, battery utilization, and fleet development. International Journal of Sustainable Transportation, 18(2), 115-133. https://doi.org/10.1080/15568318.2023.2248049
BloombergNEF (June 26, 2024). Bloombergnef’s Electric Vehicle Outlook 2024. https://www.bloomberg.com/professional/insights/webinar/bloombergnefs-electric-vehicle-outlook-2024/
Budget (2024). General car rental and assurance conditions. The right to use the mileage in the monthly car rental service is limited to 3000 - 4000 km. https://www.budget.com.tr/arac-kiralama-kosullari#:~:text=G%C3%BCnl%C3%BCk%20ara%C3%A7%20kiralama%20hizmetinde%20kilometre,hakk%C4%B1%203000%20km%20ile%20s%C4%B1n%C4%B1rl%C4%B1d%C4%B1r.
Burgess, S. C., & Choi, J. M. J. (2003). A parametric study of the energy demands of car transportation: a case study of two competing commuter routes in the UK. Transportation Research Part D: Transport and Environment, 8(1), 21-36. https://doi.org/10.1016/S1361-9209(02)00016-0
CDP (2023), Climate Change and Water Report 2022, Türkiye Edition, Carbon Disclosure. Project https://cdpTurkiye.sabanciuniv.edu/sites/cdpTurkiye.sabanciuniv.edu/files/cdp2022_report_final.pdf
EUR-Lex Regulation (EU) 2019/631 Of The European Parliament And Of Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0631
European Commission. (2024). Energy, Climate change, Environment 2050 Long-term Strategy. https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en#documentation
European Commission. (2023). The European Green Deal A growth strategy that protects the climate. https://The European Green Deal (europa.eu).
European Energy Agency. (18 mar 2024). CO2 emissions performance of new passenger cars in Europe. Paris. https://www.eea.europa.eu/en/analysis/indicators/co2-performance-of-new-passenger
Fetene, G. M., Kaplan, S., Mabit, S. L., Jensen, A. F., & Prato, C. G. (2017). Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transportation Research Part D: Transport and Environment, 54, 1-11. https://doi.org/10.1016/j.trd.2017.04.013
Gartner, J., & Wheelock, C. (2014). Electric Vehicles: 10 Predictions for 2014. Navigant Consulting, Incorporated. https://www.electric-vehicles.info/library/rapport/rapport101.pdf.
Gołębiewski, W., Osipowicz, T., Abramek, K.F., Lewicki, W., Klyus, O. (2023). Comparative assessment of energy efficiency indicators of a multi-fuel internal combustion vehicle and an electric vehicle. WUT Journal of Transportation Engineering, 137, 73-85, ISSN: 1230-9265. https://doi.org/10.5604/01.3001.0054.2989
Greenwood, I. D., Dunn, R. C., & Raine, R. R. (2007). Estimating the effects of traffic congestion on fuel consumption and vehicle emissions based on acceleration noise. Journal of Transportation Engineering, 133(2), 96-104. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:2(96)
Hao, X., Wang, H., Lin, Z., & Ouyang, M. (2020). Seasonal effects on electric vehicle energy consumption and driving range: A case study on personal, taxi, and ridesharing vehicles. Journal of Cleaner Production, 249, 119403. https://doi.org/10.1016/j.jclepro.2019.119403
Hu, C., Jain, G., Schmidt, C., Strief, C., & Sullivan, M. (2015). Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources, 289, 105-113. https://doi.org/10.1016/j.jpowsour.2015.04.166
Hu, X., Yang, Z., Sun, J., & Zhang, Y. (2023). Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription? Transportation Research Part E: Logistics and Transportation Review, 171, 103030. https://doi.org/10.1016/j.tre.2023.103030
Hwang, F. S., Confrey, T., Reidy, C., Picovici, D., Callaghan, D., Culliton, D., & Nolan, C. (2024). Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 192, 114171. https://doi.org/10.1016/j.rser.2023.114171
IEA 50. (2023) CO2 Emissions in 2023. https://www.iea.org/reports/co2-emissions-in-2023
IEA 50. (2022). Electric Vehicles: Total Cost of Ownership Tool. https://www.iea.org/data-and-statistics/data-tools/electric-vehicles-total-cost-of-ownership-tool
Iora, P., & Tribioli, L. (2019). Effect of ambient temperature on electric vehicles’ energy consumption and range: Model definition and sensitivity analysis based on nissan leaf data. World Electric Vehicle Journal, 10(1), 2. https://doi.org/10.3390/wevj10010002
Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of lithium-ion drive batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. https://doi.org/10.1016/j.apenergy.2015.11.034
Ji, Y., & Wang, C. Y. (2013). Heating strategies for Li-ion drive batteries operated from subzero temperatures. Electrochimica Acta, 107, 664-674. https://doi.org/10.1016/j.electacta.2013.03.147
Kambly, K. R., & Bradley, T. H. (2014). Estimating the HVAC energy consumption of plug-in electric vehicles. Journal of Power Sources, 259, 117-124. https://doi.org/10.1016/j.jpowsour.2014.02.033
Kambly, K., & Bradley, T. H. (2015). Geographical and temporal differences in electric vehicle range due to cabin conditioning energy consumption. Journal of Power Sources, 275, 468-475. https://doi.org/10.1016/j.jpowsour.2014.10.142
Kim, M., Yoon, S. H., Payne, W. V., & Domanski, P. A. (2010). Development of the reference model for a residential heat pump system for cooling mode fault detection and diagnosis. Journal of mechanical science and technology, 24, 1481-1489. https://doi.org/10.1007/s12206-010-0408-2
KPMG Borlease Otomotiv A.Ş. Araç kiralama sektör raporu. (2022). Turkiye. https://www.oyakyatirim.com.tr/PublicOfferingNew/DownloadFile?fileUrl=borls-ek-7-kpmg-sektor-raporu-ve-sorumluluk-beyani.pdf
Kurkin, A.; Kryukov, E.; Masleeva, O.; Petukhov, Y.; Gusev, D. Comparative Life Cycle Assessment of Electric and Internal Combustion Engine Vehicles. Energies 2024, 17, 2747. https://doi.org/10.3390/en17112747
LeasePlan., (2023). Fleet Sustainability Ranking by Industry May 2023. Amsterdam https://www.ayvens.com/-/media/leaseplan-digital/shared/documents/2023-fleet-sustainability/fleet-sustainability-ranking-by-industry-report-2023.pdf?rev=7d27204494a9411089667cc0c72a7f8d
Lee, G. Y., Jeong, J. W., Lee, K. H., Yoon, S. H., & Park, S. H. (2023). Study in Range and Energy Consumption Efficiency of Electric Passenger Vehicle under Real-Road Driving Conditions. Transaction of the Korean Society of Automotive Engineers, 5(31), 361-369. https://doi.org/10.7467/KSAE.2023.31.5.361
Lee, G., Song, J., Lim, Y., & Park, S. (2024). Energy consumption evaluation of passenger electric vehicle based on ambient temperature under Real-World driving conditions. Energy Conversion and Management, 306, 118289. https://doi.org/10.1016/j.enconman.2024.118289
Lie, T. T., & Liu, Y. (2020, June). Hong Kong Society of Mechanical Engineers, IEEE Power & Energy Society, and Institute of Electrical and Electronics Engineers. In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE 2020): proceedings: 4-7 June 2020, Chengdu, China. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9136544
Liu, G., Ouyang, M., Lu, L., Li, J., & Hua, J. (2015). A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications. Applied energy, 149, 297-314. https://doi.org/10.1016/j.apenergy.2015.03.110
Liu, K., Wang, J., Yamamoto, T., & Morikawa, T. (2016). Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles. Applied energy, 183, 1351-1360. https://doi.org/10.1016/j.apenergy.2016.09.082
Lu, M., Zhang, X., Ji, J., Xu, X., & Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27, 101155. https://doi.org/10.1016/j.est.2019.101155
McKinsey& Company. (2022), Driving decarbonization: Accelerating zero-emission freight transport. https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/driving-decarbonization-accelerating-zero-emission-freight-transport
Moniot, M., Rames, C., & Burrell, E. (2019). Feasibility analysis of taxi fleet electrification using 4.9 million miles of real-world driving data (No. 2019-01-0392). SAE Technical Paper. https://doi.org/10.4271/2019-01-0392
Pinto, M. (2022) Low-Carbon Pathways for Transportation. The Union of Concerned Scientists. https://www.ucsusa.org/resources/low-carbon-pathways-transportation#ucs-report-downloads
Olorunfemi, B. (2024). The Innovations Driving Tesla's Success: Disruptions, Customer Transformation, and Entrepreneurial Strategies. Qeios. https://doi.org/10.32388/HA56OH
Opetnik, M.; Hausberger, S.; Matzer, C.U.; Lipp, S.; Landl, L.; Weller, K.; Elser, M. The Impact of Vehicle Technology, Size Class, and Driving Style on the GHG and Pollutant Emissions of Passenger Cars. Energies 2024, 17, 2052. https://doi.org/10.3390/en17092052
Ozkurt, C., Camci, F., Atamuradov, V., & Odorry, C. (2016). Integration of sampling based battery state of health estimation method in electric vehicles. Applied Energy, 175, 356-367. https://doi.org/10.1016/j.apenergy.2016.05.037
PwC Türkiye Sürdürülebilirlik Raporu (2022). https://www.pwc.com.tr/tr/hakkimizda/surdurulebilirlik-raporu/pdf/pwc-turkiye-surdurulebilirlik-raporu.pdf
Qiu, C., & Wang, G. (2016). New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles. Energy Conversion and Management, 119, 389-398. https://doi.org/10.1016/j.enconman.2016.04.044
Škoda Octavia (2024), Teknik Özellikler Octavıa https://cdn.skoda.com.tr/assets/pages/skoda-services/model-catalogs/octavia_model_katalogu.pdf
Sun, Z., Hao, P., Ban, X. J., & Yang, D. (2015). Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data. Transportation Research Part D: Transport and Environment, 34, 27-40. https://doi.org/10.1016/j.trd.2014.10.005
Tang, T. Q., Huang, H. J., & Shang, H. Y. (2015). Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Transportation Research Part D: Transport and Environment, 41, 423-432. https://doi.org/10.1016/j.trd.2015.10.016
TOKKDER (2023). Operational Rental Sector Report, İstanbul. https://tokkder.org/wp-content/uploads/2024/03/TOKKDER-Operasyonel-Kiralama-Sektor-Raporu-Sunumu-2023-Yil-Sonu.pdf
Topal O. (2024), Lecture Notes, ELE 582 Electric and Hybrid Vehicle Technologies, TOBB University of Economics and Technology
Topal, O. (2023). Sustainable urban mobility in Istanbul: A financial assessment of fuel cell hybrid-electric buses in the metrobus system. CT&F-Ciencia, Tecnología y Futuro, 13(1), 15-30. https://doi.org/10.29047/01225383.654
TUIK Statics data portal (April 2024). Motor Road Vehicles Statistics. Ankara. https://data.tuik.gov.tr/Kategori/GetKategori?p=Ulastirma-ve-Haberlesme-112
TUIK Statics data portal (05 June, 2024). Greenhouse Gas Emission Statistics. Ankara. https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2022-53701.
Wang, H., Zhang, X., & Ouyang, M. (2015). Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing. Applied energy, 157, 710-719. https://doi.org/10.1016/j.apenergy.2015.05.057
Xu, B., & Arjmandzadeh, Z. (2023). Parametric study on thermal management system for the range of full (Tesla Model S)/compact-size (Tesla Model 3) electric vehicles. Energy Conversion and Management, 278, 116753. https://doi.org/10.1016/j.enconman.2023.116753
You, G. W., Park, S., & Oh, D. (2016). Real-time state-of-health estimation for electric vehicle drive batteries: A data-driven approach. Applied energy, 176, 92-103. https://doi.org/10.1016/j.apenergy.2016.05.051
Descargas
Derechos de autor 2024 CT&F - Ciencia, Tecnología y Futuro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |